Skip to main content

Vision-Based Grasping, Where Robotics Meets Neuroscience

  • Chapter
  • First Online:
The Visual Neuroscience of Robotic Grasping

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 28))

Abstract

This chapter describes how we model the integration of on-line, action-oriented visual information (dorsal pathway) with knowledge about the target object and memories of previous grasping experiences and object characteristics (ventral pathway). Previous models of vision-based grasping have built so far mainly, when not exclusively, on monkey data. Recent neuropsychological and neuroimaging research has shed a new light on how visuomotor coordination is organized and performed in the human brain. Thanks to such research, a model of vision-based grasping which integrates knowledge coming from single-cell monkey studies with human data can be developed. The basic framework of the proposed model is outlined in this chapter. Final goal of the proposal is to mimic, in a robotic setup, the coordination between sensory, associative and motor cortex of the human brain in vision-based grasping actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansuini C (2008) Reaching beyond grasp. Ph.D. thesis, Università degli Studi di Padova

    Google Scholar 

  • Ansuini C, Santello M, Massaccesi S, Castiello U (2006) Effects of end-goal on hand shaping. J Neurophysiol 95(4):2456–2465. doi:10.1152/jn.01107.2005

    Article  Google Scholar 

  • Ansuini C, Giosa L, Turella L, Alto G, Castiello U (2008) An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res 185(1):111–119. doi:10.1007/s00221-007-1136-4

    Article  Google Scholar 

  • Ansuini C, Santello M, Tubaldi F, Massaccesi S, Castiello U (2007a) Control of hand shaping in response to object shape perturbation. Exp Brain Res 180(1):85–96, 006–0840-9

    Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for control of the hands. In: Goodwin AW, Darian-Smith I (eds) Hand function and the neocortex. Experimental brain research supplemental, vol 10. Springer, Berlin, pp 111–129

    Google Scholar 

  • Arbib MA (2010) Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain Lang 112(1):12–24. doi:10.1016/j.bandl.2009.10.001

    Article  MathSciNet  Google Scholar 

  • Baud-Bovy G, Soechting JF (2001) Two virtual fingers in the control of the tripod grasp. J Neurophysiol 86(2):604–615

    Google Scholar 

  • Begliomini C, Wall MB, Smith AT, Castiello U (2007) Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci 25(4):1245–1252. doi:10.1111/j.1460-9568.2007.05365.x

    Article  Google Scholar 

  • Bingham GP, Muchisky MM (1993a) Center of mass perception and inertial frames of reference. Percept Psychophysi 54(5):617–632

    Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11(9):3276–3286

    Article  Google Scholar 

  • Bryson J, Stein LA (2001) Modularity and specialized learning: mapping between agent architectures and brain organization. Emergent Neural Comput Architectures Based Neurosci LNCS 2036:98–113

    Article  Google Scholar 

  • Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T (2007) A model of V4 shape selectivity and invariance. J Neurophysiol 98(3):1733–1750. doi:10.1152/jn.01265.2006

    Article  Google Scholar 

  • Castiello U, Bennetta KM, Egan GF, Tochon-Danguy HJ, Kritikos A, Dunai J (2000) Human inferior parietal cortex programs the action class of grasping. Cogn Syst Res 1(2):89–97. doi:10.1016/S1389-0417(99)00011-X

    Article  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6(9):726–736. doi:10.1038/nrn1744

    Article  Google Scholar 

  • Cattaneo L, Voss M, Brochier T, Prabhu G, Wolpert DM, Lemon RN (2005) A cortico-cortical mechanism mediating object-driven grasp in humans. Proc Nat Acad Sci USA 102(3):898–903. doi:10.1073/pnas.0409182102

    Article  Google Scholar 

  • Cavina-Pratesi C, Monaco S, McAdam T, Milner D, Schenk T, Culham JC (2007b) Which aspects of hand-preshaping does human AIP compute during visually guided actions? Evidence from event-related fMRI. In: Annual meeting of the society for neuroscience

    Google Scholar 

  • Chinellato E, Fisher RB, Morales A, del Pobil AP (2003a) Ranking planar grasp configurations for a three-finger hand. In: IEEE International conference on robotics and automation, Taipei, Taiwan

    Google Scholar 

  • Cisek P (2005) A computational model of reach decisions in the primate cerebral cortex. In: Modeling natural action selection

    Google Scholar 

  • Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15(7):913–920. doi:10.1093/cercor/bhh190

    Article  Google Scholar 

  • Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a tms approach. Neuropsychologia 47(6):1553–1562. doi:10.1016/j.neuropsychologia.2008.12.034

    Article  Google Scholar 

  • Cuijpers RH, Smeets JBJ, Brenner E (2004) On the relation between object shape and grasping kinematics. J Neurophysiol 91(6):2598–2606. doi:10.1152/jn.00644.2003

    Article  Google Scholar 

  • Cutkosky M, Howe R (1990) Human grasp choice and robotic grasp analysis. In: Venkataraman S, Iberall T (eds) Dextrous robot hands, Springer, Berlin, Chap. 1, pp 5–31

    Google Scholar 

  • Eastough D, Edwards MG (2007) Movement kinematics in prehension are affected by grasping objects of different mass. Exp Brain Res 176(1):193–198. doi:10.1007/s00221-006-0749-3

    Article  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83(1):528–536

    Google Scholar 

  • Ehrsson HH, Fagergren A, Johansson RS, Forssberg H (2003) Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol 90(5):2978–2986. doi:10.1152/jn.00958.2002

    Article  Google Scholar 

  • Ellison A, Cowey A (2009) Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia 47(6):1609–1614. doi:10.1016/j.neuropsychologia.2008.12.013

    Article  Google Scholar 

  • Fagg AH, Arbib MA (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Networks 11(7–8):1277–1303

    Article  Google Scholar 

  • Frey SH, Vinton D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23(2–3):397–405. doi:10.1016/j.cogbrainres.2004.11.010

    Article  Google Scholar 

  • Fukuda H, Fukumura N, Katayama M, Uno Y (2000) Relation between object recognition and formation of hand shape: a computational approach to human grasping movements. Syst Comput Jpn 31(12):11–22

    Google Scholar 

  • Fukui T, Takemura N, Inui T (2006) Visuomotor transformation process in goal-directed prehension: utilization of online vision during preshaping phase of grasping. Jpn Psychol Res 48(3):188–203. doi:10.1111/j.1468-5884.2006.00318.x, http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1468-5884.2006.00318.x

    Google Scholar 

  • Galea MP, Castiello U, Dalwood N (2001) Thumb invariance during prehension movement: effects of object orientation. Neuroreport 12(10):2185–2187

    Article  Google Scholar 

  • Gallese V, Craighero L, Fadiga L, Fogassi L (1999) Perception through action. Psyche 5(21):1

    Google Scholar 

  • Gentilucci M, Caselli L, Secchi C (2003) Finger control in the tripod grasp. Exp Brain Res 149(3):351–360. doi:10.1007/s00221-002-1359-3

    Google Scholar 

  • Goodale MA, Milner AD (2004) Sight unseen. Oxford University Press, Oxford

    Google Scholar 

  • Goodale MA, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144

    Google Scholar 

  • Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69(6):1789–1796

    Google Scholar 

  • Himmelbach M, Karnath HO (2005) Dorsal and ventral stream interaction: contributions from optic ataxia. J Cogn Neurosci 17(4):632–640. doi:10.1162/0898929053467514

    Article  Google Scholar 

  • Hoeren M, Kaller CP, Glauche V, Vry MS, Rijntjes M, Hamzei F, Weiller C (2013) Action semantics and movement characteristics engage distinct processing streams during the observation of tool use. Exp Brain Res 229(2):243–260. doi:10.1007/s00221-013-3610-5

    Article  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol London 160(1):106–154

    Article  Google Scholar 

  • Iberall T (1987) The nature of human prehension: three dextrous hands in one. In: IEEE international conference on robotics and automation, pp 396–401

    Google Scholar 

  • Iberall T, Bingham G, Arbib MA (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. In: Heuer H, Fromm C (eds) Generation and modulation of action patterns. Springer, Berlin, pp 158–173

    Chapter  Google Scholar 

  • Jeannerod M (1997) The cognitive neuroscience of action. Blackwell, Oxford

    Google Scholar 

  • Jenmalm P, Dahlstedt S, Johansson RS (2000) Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J Neurophysiol 84(6):2984–2997

    Google Scholar 

  • Kawasaki M, Watanabe M, Okuda J, Sakagami M, Aihara K (2008) Human posterior parietal cortex maintains color, shape and motion in visual short-term memory. Brain Res 1213:91–97. doi:10.1016/j.brainres.2008.03.037

    Article  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  Google Scholar 

  • Khosla D, Chen Y, Kim K (2014) A neuromorphic system for video object recognition. Front Comput Neurosci 8:147. doi:10.3389/fncom.2014.00147

    Article  Google Scholar 

  • Króliczak G, Cavina-Pratesi C, Goodman DA, Culham JC (2007) What does the brain do when you fake it? an fMRI study of pantomimed and real grasping. J Neurophysiol 97(3):2410–2422. doi:10.1152/jn.00778.2006

    Article  Google Scholar 

  • Lebedev MA, Wise SP (2002) Insights into seeing and grasping: Distinguishing the neural correlates of perception and action. Behav Cognitive Neurosci Rev 1(2):108–129. doi:10.1177/1534582302001002002

    Article  Google Scholar 

  • Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152(2):156–165. doi:10.1007/s00221-003-1522-5

    Article  Google Scholar 

  • Lourens T, Barakova EI (2007) Orientation contrast sensitive cells in primate V1 a computational model. Nat Comput 6(3):241–252

    Article  MATH  MathSciNet  Google Scholar 

  • Mackenzie C, Iberall T (1994) The grasping hand. North Holland, New York

    Google Scholar 

  • Makuuchi M, Someya Y, Ogawa S, Takayama Y (2012) Hand shape selection in pantomimed grasping: interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area. Hum Brain Mapp 33(8):1821–1833. doi:10.1002/hbm.21323

    Article  Google Scholar 

  • McIntosh RD, Dijkerman HC, Mon-Williams M, Milner AD (2004) Grasping what is graspable: evidence from visual form agnosia. Cortex 40(4–5):695–702

    Article  Google Scholar 

  • McLaughlin D, Shapley R, Shelley M (2003) Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response. J Physiol Paris 97(2–3):237–252. doi:10.1016/j.jphysparis.2003.09.019

    Article  Google Scholar 

  • Miall R (2003) Connecting mirror neurons and forward models. Neuroreport 14(16):1–3

    Google Scholar 

  • Milner AD, Dijkerman HC, McIntosh RD, Rossetti Y, Pisella L (2003) Delayed reaching and grasping in patients with optic ataxia. Prog Brain Res 142:225–242

    Google Scholar 

  • Morales A, Sanz PJ, del Pobil AP, Fagg AH (2006) Vision-based three-finger grasp synthesis constrained by hand geometry. Rob Auton Syst 54(6):496–512

    Article  Google Scholar 

  • Morales A, Chinellato E, Fagg AH, del Pobil AP (2004) Using experience for assessing grasp reliability. Int J Humanoid Rob 1(4):671–691

    Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg (Br) 38-B(4):902–913

    Google Scholar 

  • Ogawa K, Inui T, Sugio T, (2007) Neural correlates of state estimation in visually guided movements: an event-related fMRI study. Cortex 43(3):289–300

    Google Scholar 

  • O’Reilly RC, Munakata Y (2000) Computational explorations in cognitive neuroscience—understanding the mind by simulating the brain. MIT Press, Cambridge

    Google Scholar 

  • Oztop E, Bradley NS, Arbib MA (2004) Infant grasp learning: a computational model. Exp Brain Res 158(4):480–503. doi:10.1007/s00221-004-1914-1

    Article  Google Scholar 

  • Oztop E, Arbib MA (2002) Schema design and implementation of the grasp-related mirror neuron system. Biol Cybern 87(2):116–140. doi:10.1007/s00422-002-0318-1

    Article  MATH  Google Scholar 

  • Oztop E, Imamizu H, Cheng G, Kawato M (2006) A computational model of anterior intraparietal (AIP) neurons. Neurocomputing 69(10–12):1354–1361

    Google Scholar 

  • Passingham RE, Toni I (2001) Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making. Neuroimage 14(1 Pt 2):S125–S131. doi:10.1006/nimg.2001.0836

    Article  Google Scholar 

  • Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114(2):226–234

    Article  Google Scholar 

  • Pouget S, Sejnowski A (1997) Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci 9(2):222–237

    Article  Google Scholar 

  • Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3(Suppl):1192–1198. doi:10.1038/81469

    Article  Google Scholar 

  • Quinlan DJ, Goodale MA, Culham JC (2005) Don’t bite the hand that feeds you: a comparison of mouth and hand kinematics. J Vis 5(8):382

    Article  Google Scholar 

  • Riesenhuber M, Poggio T (2000) Models of object recognition. Nat Neurosci 3:1199–1204. doi:10.1038/81479

    Article  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901

    Article  Google Scholar 

  • Rolls E, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford, UK

    Google Scholar 

  • Rolls ET, Webb TJ (2014) Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems. Front Comput Neurosci 8:85. doi:10.3389/fncom.2014.00085

    Article  Google Scholar 

  • Sabatini SP, Solari F, Andreani G, Bartolozzi C, Bisio GM (2001) A hierarchical model of complex cells in visual cortex for the binocular perception of motion-in-depth. Adv Neural In Process Syst 1271–1278

    Google Scholar 

  • Sakata H, Tsutsui KI, Taira M (2005) Toward an understanding of the neural processing for 3D shape perception. Neuropsychologia 43(2):151–161. doi:10.1016/j.neuropsychologia.2004.11.003

    Article  Google Scholar 

  • Sereno ME, Trinath T, Augath M, Logothetis NK (2002) Three-dimensional shape representation in monkey cortex. Neuron 33(4):635–652

    Article  Google Scholar 

  • Shikata E, Hamzei F, Glauche V, Koch M, Weiller C, Binkofski F, Büchel C (2003) Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17(5):1105–1110

    Article  Google Scholar 

  • Snow JC, Pettypiece CE, McAdam TD, McLean AD, Stroman PW, Goodale MA, Culham JC (2011) Bringing the real world into the fmri scanner: repetition effects for pictures versus real objects. Sci Rep 1:130. doi:10.1038/srep00130

    Article  Google Scholar 

  • Sugio T, Ogawa K, Inui T (2003a) Neural correlates of semantic effects on grasping familiar objects. Neuroreport 14(18):2297–2301. doi:10.1097/01.wnr.0000092474.09492.3a

  • Sugio T, Ogawa K, Inui T (2003b) Multiple action representations of familiar objects with handles: an fMRI study. In: European conference on visual perception

    Google Scholar 

  • Takasawa M, Oku N, Osaki Y, Kinoshita H, Imaizumi M, Yoshikawa T, Kimura Y, Kajimoto K, Sasagaki M, Kitagawa K, Hori M, Hatazawa J (2003) Cerebral and cerebellar activation in power and precision grip movements: an \({H}_2\) \(^{15}{O}\) positron emission tomography study. J Cereb Blood Flow Metab 23(11):1378–1382, doi:DOIurl10.1097/01.WCB.0000091258.83091.C2

    Google Scholar 

  • Tankus A, Fried I (2012) Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 24(3):600–610

    Article  Google Scholar 

  • Tessari A, Rumiati RI (2002) Motor distal component and pragmatic representation of objects. Cogn Brain Res 14(2):218–227

    Article  Google Scholar 

  • Tresilian JR, Mon-Williams M, Kelly BM (1999) Increasing confidence in vergence as a cue to distance. Proc R Soc B: Biol Sci 266(1414):39–44

    Article  Google Scholar 

  • Tucker M, Ellis R (2004) Action priming by briefly presented objects. ACTA Psychol (Amsterdam) 116(2):185–203. doi:10.1016/j.actpsy.2004.01.004

    Article  Google Scholar 

  • Ullman S (1996) High-level vision. Object recognition and visual cognition. MIT Press, Cambridge

    MATH  Google Scholar 

  • Uno Y, Fukumura N, Suzuki R, Kawato M (1995) A computational model for recognizing objects and planning hand shapes in grasping movements. Neural Networks 8(6):839–851. doi:10.1016/0893-6080(95)00002-H

    Article  Google Scholar 

  • Valyear KF, Culham JC (2010) Observing learned object-specific functional grasps preferentially activates the ventral stream. J Cogn Neurosci 22(5):970–984. doi:10.1162/jocn.2009.21256

    Article  Google Scholar 

  • Wagman JB, Carello C (2003) Haptically creating affordances: the user-tool interface. J Exp Psychol: Appl 9(3):175–186. doi:10.1037/1076-898X.9.3.175

    Google Scholar 

  • Westwood DA, Chapman CD, Roy EA (2000a) Pantomimed actions may be controlled by the ventral visual stream. Exp Brain Res 130(4):545–548

    Google Scholar 

  • Wokke ME, Scholte HS, Lamme VAF (2014) Opposing dorsal/ventral stream dynamics during figure-ground segregation. J Cogn Neurosci 26(2):365–379

    Article  Google Scholar 

  • Yousefi B, Loo CK (2014a) Comparative study on interaction of form and motion processing streams by applying two different classifiers in mechanism for recognition of biological movement. Sci World J 723:213. doi:10.1155/2014/723213

    Google Scholar 

  • Yousefi B, Loo CK (2014b) Development of biological movement recognition by interaction between active basis model and fuzzy optical flow division. Sci World J 238:234. doi:10.1155/2014/238234

    Google Scholar 

  • Zachariou V, Klatzky R, Behrmann M (2014) Ventral and dorsal visual stream contributions to the perception of object shape and object location. J Cogn Neurosci 26(1):189–209

    Article  Google Scholar 

  • Zhong J, Cangelosi A, Wermter S (2014) Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives. Front Behav Neurosci 8:22. doi:10.3389/fnbeh.2014.00022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eris Chinellato .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chinellato, E., del Pobil, A.P. (2016). Vision-Based Grasping, Where Robotics Meets Neuroscience. In: The Visual Neuroscience of Robotic Grasping. Cognitive Systems Monographs, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-20303-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20303-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20302-7

  • Online ISBN: 978-3-319-20303-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics