Skip to main content

Cytopenias: Acquired Bone Marrow Failure

  • Chapter
  • First Online:
Diagnosis of Blood and Bone Marrow Disorders
  • 2000 Accesses

Abstract

Aplastic anemia (AA) is characterized by diminished or absent hematopoietic precursors in the bone marrow (BM), most often due to injury to the hematopoietic stem cell. AA can be congenital but is more frequently acquired. Acquired AA preferentially affects young adults (20–25 years) and individuals over the age of 55–60 years [1]. The incidence of acquired AA is estimated at two per million annually, and occurs at higher rates in countries with increased rates of viral hepatitis [2]. Table 4.1 lists the causative agents that have been reported associated with acquired AA. However, despite numerous, diverse possible causes, from chemicals and drugs to viral, collagen vascular diseases and pregnancy, in about 70% of patients, no clear cause can be determined and the AA is considered to be idiopathic [3]. It has been suggested that immune-mediated destruction/suppression may be the underlying cause in many of the patients with idiopathic AA. It has been postulated that damage induced by chemicals, drugs, viruses, or antigens leads to lymphocyte activation resulting in destruction of BM hematopoietic cells [4]. Studies have shown that autoreactive T-lymphocytes from the BM of patients with AA can inhibit hematopoiesis when co-cultured with normal marrows [5, 6]. This inhibition may be mediated by the release of marrow-suppressing cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor (TNF), and interleukin-2 [1], ultimately leading to apoptotic death of BM hematopoietic stem cells. IFN-γ may also lead to increased expression of the Fas and Fas receptor [7]. Telomeric attrition resulting in critically shortened telomeres, prompting cellular senescence or crisis, has also been considered one of the underlying causes of AA. Inherited heterozygous mutations in the genes that repair or protect telomere may limit marrow stem cell self-renewal and predispose some patients to marrow failure [8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Maciejewski JP, et al. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. 2002;99(9):3129–35.

    CAS  PubMed  Google Scholar 

  2. Nathan DG, Oski FA. Hematology of infancy and childhood. Philadelphia: WB Saunders; 2009.

    Google Scholar 

  3. Fuhrer M, et al. Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood. 2005;106(6):2102–4.

    PubMed  Google Scholar 

  4. Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia. N Engl J Med. 1997;336(19):1365–72.

    CAS  PubMed  Google Scholar 

  5. Shimamura A, Guinan EA. Acquired aplastic anemia. In: Nathan D, Orkin SH, editors. Hematology of infancy and childhood. Philadelphia: WB Saunders; 2003. p. 256.

    Google Scholar 

  6. Young NS. Acquired aplastic anemia. Ann Intern Med. 2002;136(7):534–46.

    PubMed  Google Scholar 

  7. Maciejewski JP, et al. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol. 1995;91(1):245–52.

    CAS  PubMed  Google Scholar 

  8. Ly H, et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood. 2005;105(6):2332–9.

    CAS  PubMed  Google Scholar 

  9. Yamaguchi H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352(14):1413–24.

    CAS  PubMed  Google Scholar 

  10. Stanley N, Olson TS, Babushok DV. Recent advances in understanding clonal haematopoiesis in aplastic anaemia. Br J Haematol. 2017;177:509.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Torres HA, et al. Infections in patients with aplastic anemia: experience at a tertiary care cancer center. Cancer. 2003;98(1):86–93.

    PubMed  Google Scholar 

  12. Killick SB, et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 2016;172(2):187–207.

    PubMed  Google Scholar 

  13. Marsh JC, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70.

    CAS  PubMed  Google Scholar 

  14. Nakao S, Sugimori C, Yamazaki H. Clinical significance of a small population of paroxysmal nocturnal hemoglobinuria-type cells in the management of bone marrow failure. Int J Hematol. 2006;84(2):118–22.

    PubMed  Google Scholar 

  15. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108(8):2509–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. de Planque MM, et al. Long-term follow-up of severe aplastic anaemia patients treated with antithymocyte globulin. Severe Aplastic Anaemia Working Party of the European Cooperative Group for Bone Marrow Transplantation (EBMT). Br J Haematol. 1989;73(1):121–6.

    PubMed  Google Scholar 

  17. Sugimori C, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107(4):1308–14.

    CAS  PubMed  Google Scholar 

  18. Sutherland DR, et al. Diagnosing PNH with FLAER and multiparameter flow cytometry. Cytometry B Clin Cytom. 2007;72(3):167–77.

    PubMed  Google Scholar 

  19. Morado M, et al. Diagnostic screening of paroxysmal nocturnal hemoglobinuria: prospective multicentric evaluation of the current medical indications. Cytometry B Clin Cytom. 2016;92:361.

    PubMed  Google Scholar 

  20. Borowitz MJ, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78(4):211–30.

    PubMed  Google Scholar 

  21. Shichishima T, Noji H. A new aspect of the molecular pathogenesis of paroxysmal nocturnal hemoglobinuria. Hematology (Amsterdam, Netherlands). 2002;7(4):211–27.

    CAS  Google Scholar 

  22. Young NS. Paroxysmal nocturnal hemoglobinuria: current issues in pathophysiology and treatment. Curr Hematol Rep. 2005;4(2):103–9.

    CAS  PubMed  Google Scholar 

  23. Yoshizato T, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35–47.

    CAS  PubMed  Google Scholar 

  24. McKerrell T, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10(8):1239–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Young NS, Ogawa S. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(17):1675–6.

    PubMed  Google Scholar 

  26. Kulasekararaj AG, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014;124(17):2698–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Inaguma Y, et al. Induction of HLA-B*40:02-restricted T cells possessing cytotoxic and suppressive functions against haematopoietic progenitor cells from a patient with severe aplastic anaemia. Br J Haematol. 2016;172(1):131–4.

    PubMed  Google Scholar 

  28. Katagiri T, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011;118(25):6601–9.

    CAS  PubMed  Google Scholar 

  29. Ohga S, et al. Treatment responses of childhood aplastic anaemia with chromosomal aberrations at diagnosis. Br J Haematol. 2002;118(1):313–9.

    CAS  PubMed  Google Scholar 

  30. Mikhailova N, et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica. 1996;81(5):418–22.

    CAS  PubMed  Google Scholar 

  31. Appelbaum FR, et al. Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp Hematol. 1987;15(11):1134–9.

    CAS  PubMed  Google Scholar 

  32. Moormeier JA, et al. Trisomy 6: a recurring cytogenetic abnormality associated with marrow hypoplasia. Blood. 1991;77(6):1397–8.

    CAS  PubMed  Google Scholar 

  33. Fuhrer M, et al. Relapse and clonal disease in children with aplastic anemia (AA) after immunosuppressive therapy (IST): the SAA 94 experience. German/Austrian Pediatric Aplastic Anemia Working Group. Klin Padiatr. 1998;210(4):173–9.

    CAS  PubMed  Google Scholar 

  34. Kojima S, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood. 2002;100(3):786–90.

    CAS  PubMed  Google Scholar 

  35. Yamazaki E, et al. The evidence of clonal evolution with monosomy 7 in aplastic anemia following granulocyte colony-stimulating factor using the polymerase chain reaction. Blood Cells Mol Dis. 1997;23(2):213–8.

    CAS  PubMed  Google Scholar 

  36. Doney K, et al. Primary treatment of acquired aplastic anemia: outcomes with bone marrow transplantation and immunosuppressive therapy. Seattle Bone Marrow Transplant Team. Ann Intern Med. 1997;126(2):107–15.

    CAS  PubMed  Google Scholar 

  37. Socie G, et al. Malignant tumors occurring after treatment of aplastic anemia. European Bone Marrow Transplantation-Severe Aplastic Anaemia Working Party. N Engl J Med. 1993;329(16):1152–7.

    CAS  PubMed  Google Scholar 

  38. Frickhofen N, et al. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood. 2003;101(4):1236–42.

    CAS  PubMed  Google Scholar 

  39. Rosenfeld S, et al. Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. JAMA. 2003;289(9):1130–5.

    CAS  PubMed  Google Scholar 

  40. Orazi A, et al. Hypoplastic myelodysplastic syndromes can be distinguished from acquired aplastic anemia by CD34 and PCNA immunostaining of bone marrow biopsy specimens. Am J Clin Pathol. 1997;107(3):268–74.

    CAS  PubMed  Google Scholar 

  41. Wang SA, et al. Detection of paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes and related bone marrow diseases, with emphasis on diagnostic pitfalls and caveats. Haematologica. 2009;94(1):29–37.

    PubMed  Google Scholar 

  42. Stetler-Stevenson M, et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001;98(4):979–87.

    CAS  PubMed  Google Scholar 

  43. Gulbis B, et al. Epidemiology of rare anaemias in Europe. Adv Exp Med Biol. 2010;686:375–96.

    PubMed  Google Scholar 

  44. Schrezenmeier H, et al. Baseline characteristics and disease burden in patients in the International Paroxysmal Nocturnal Hemoglobinuria Registry. Haematologica. 2014;99(5):922–9.

    PubMed  PubMed Central  Google Scholar 

  45. Socie G, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet. 1996;348(9027):573–7.

    CAS  PubMed  Google Scholar 

  46. Moyo VM, et al. Natural history of paroxysmal nocturnal haemoglobinuria using modern diagnostic assays. Br J Haematol. 2004;126(1):133–8.

    CAS  PubMed  Google Scholar 

  47. Parker C, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood. 2005;106(12):3699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rollinson S, et al. Both paroxysmal nocturnal hemoglobinuria (PNH) type II cells and PNH type III cells can arise from different point mutations involving the same codon of the PIG-A gene. Blood. 1997;89(8):3069–71.

    CAS  PubMed  Google Scholar 

  49. Ostendorf T, et al. Heterogeneous PIG-A mutations in different cell lineages in paroxysmal nocturnal hemoglobinuria. Blood. 1995;85(6):1640–6.

    CAS  PubMed  Google Scholar 

  50. Nafa K, et al. The spectrum of somatic mutations in the PIG-A gene in paroxysmal nocturnal hemoglobinuria includes large deletions and small duplications. Blood Cells Mol Dis. 1998;24(3):370–84.

    CAS  PubMed  Google Scholar 

  51. Araten DJ, et al. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci U S A. 1999;96(9):5209–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu R, et al. PIG-A mutations in normal hematopoiesis. Blood. 2005;105(10):3848–54.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa A. Wang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S.A. (2018). Cytopenias: Acquired Bone Marrow Failure. In: Wang, S., Hasserjian, R. (eds) Diagnosis of Blood and Bone Marrow Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-20279-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20279-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20278-5

  • Online ISBN: 978-3-319-20279-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics