Advertisement

“Zeldenrust”: A Mathematical Game-Based Learning Environment for Prevocational Students

  • Sylke VandercruysseEmail author
  • Judith ter Vrugte
  • Ton de Jong
  • Pieter Wouters
  • Herre van Oostendorp
  • Lieven Verschaffel
  • Wim Van Dooren
  • Jan Elen
Part of the Advances in Game-Based Learning book series (AGBL)

Abstract

In this contribution, we present a game-based learning environment for 12–16-year-old vocational students in which they can practice proportional reasoning problems. The learning content and goals, as well as the specific game features are discussed. We can conclude that developing a serious game implies many choices and decisions led by theoretical foundations, as well as by practical limitations and pragmatic considerations.

Keywords

Number sense Game development Educational game 

Notes

Acknowledgment

The environment described in this manuscript is developed and used for studies based on a research project funded by NWO/PROO (project number 411-00-003) and the Fund of Scientific Research (FWO—project number G.O.516.11.N.10).

References

  1. Aldrich, C. (2005). Learning by doing: The comprehensive guide to simulations, computer games, and pedagogy in e-learning and other educational experiences. San Francisco, CA: Pfeiffer.Google Scholar
  2. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209. doi: 10.1207/s15326985ep4004_2.CrossRefGoogle Scholar
  3. Berk, D., Taber, S. B., Gorowara, C. C., & Poetzl, C. (2009). Developing prospective elementary teachers’ flexibility in the domain of proportional reasoning. Mathematical Thinking and Learning, 11, 113–135. doi: 10.1080/10986060903022714.CrossRefGoogle Scholar
  4. Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88, 715–730. doi: 10.1037/0022-0663.88.4.715.CrossRefGoogle Scholar
  5. Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportions: Research implications. In D. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159–178). New York, NY: Macmillan.Google Scholar
  6. DeLeeuw, K. E., & Mayer, R. E. (2011). Cognitive consequences of making computer-based learning activities more game-like. Computers in Human Behaviour, 27, 2011–2016. doi: 10.1016/j.chb.2011.05.008.CrossRefGoogle Scholar
  7. Dihoff, R. E., Brosvic, G. M., & Epstein, M. L. (2003). The role of feedback during academic testing: The delay retention effect revisited. The Psychological Record, 53, 533–548.Google Scholar
  8. Goodman, D., Bradley, N. L., Paras, B., Williamson, I. J., & Bizzochi, J. (2006). Video gaming promotes concussion knowledge acquisition in youth hockey players. Journal of Adolescence, 29, 351–360. doi: 10.1016/j.adolescence.2005.07.004.CrossRefGoogle Scholar
  9. Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. Journal of Learning Sciences, 20, 169–206. doi: 10.1080/10508406.2010.508029.CrossRefGoogle Scholar
  10. Harel, G., & Behr, M. (1989). Structure and hierarchy of missing-value proportion problems and their representations. Journal of Mathematical Behavior, 8, 77–119.Google Scholar
  11. Hays, R. T. (2005). The effectiveness of instructional games: A literature review and discussion (Report No. 2005-004). Orlando, FL: Naval Air Warfare Center Training Systems Division.Google Scholar
  12. Hendrickx, M. (2013). De invloed van getalstructuren op het proportioneel redeneren. Een empirisch onderzoek naar de hypothetische rangordening gebruikt in ‘serious games’ (Unpublished master’s thesis). KU Leuven, Belgium.Google Scholar
  13. Kaput, J., & West, M. M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 237–292). New York, NY: SUNY Press.Google Scholar
  14. Karplus, R., Pulos, S., & Stage, E. K. (1983a). Early adolescents’ proportional reasoning on ‘rate’. Educational Studies on Mathematics, 14, 219–233. doi: 10.1007/BF00410539.CrossRefGoogle Scholar
  15. Karplus, R., Pulos, S., & Stage, E. K. (1983b). Proportional reasoning of early adolescents. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 45–90). New York, NY: Academic.Google Scholar
  16. Ke, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay? Computers & Education, 51, 1609–1620. doi: 10.1016/j.compedu.2008.03.003.CrossRefGoogle Scholar
  17. Lamon, S. J. (1999). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. Mahwah, NJ: Erlbaum.Google Scholar
  18. Lamon, S. J. (2007). Rational numbers and proportional reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning. A project of the national council of teachers of mathematics (pp. 629–667). Reston, VA: NCTM.Google Scholar
  19. Lim, S., & Reeves, B. (2009). Being in the game: Effects of avatar choice and point of view on psychophysiological responses during play. Media Psychology, 12, 348–370. doi: 10.1080/15213260903287242.CrossRefGoogle Scholar
  20. Malone, T. (1980). What makes things fun to learn? Heuristics for designing instructional computer games. Proceedings of the 3rd ACM SIGSMALL Symposium and the 1st SIGPC Symposium, Palo Alto (USA), 162–169.Google Scholar
  21. McIntosh, A., Reys, B. J., & Reys, R. E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3), 2–8.Google Scholar
  22. Overheid, V. (2009). Peiling wiskunde in de eerste graad secundair onderwijs (B-stroom). Brussels, Belgium: Vlaams Ministerie van Onderwijs en Vorming.Google Scholar
  23. Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and school motivation. Computers & Education, 52(1), 1–12. doi: 10.1016/j.compedu.2008.06.004.CrossRefGoogle Scholar
  24. Spinillo, A. G., & Bryant, P. (1999). Proportional reasoning in young children: Part-part comparisons about continuous and discontinuous quantity. Mathematical Cognition, 5, 181–197. doi: 10.1080/135467999387298.CrossRefGoogle Scholar
  25. Steinhorsdottir, O. B. (2006). Proportional reasoning: Variable influencing the problems difficulty level and one’s use of problem solving strategies. In J. Novota, H. Maraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education 5 (pp. 169–176). Prague, Czechia: PME.Google Scholar
  26. ter Vrugte, J., de Jong, T., Wouters, P., Vandercruysse, S., Elen, J. & van Oostendorp, H. (2015).When a game supports prevocational math education but integrated reflection does not. Journal of Computer Assisted Learning. doi: 10.1111/jcal.12104.Google Scholar
  27. Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, 181–204. doi: 10.1007/BF02400937.CrossRefGoogle Scholar
  28. Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., Van Dooren, W., & Elen, J. (Submitted). Content integration as a factor in math game effectiveness. Educational Technology Research & Development.Google Scholar
  29. Van Dooren, W., De Bock, D., Evers, M., & Verschaffel, L. (2009). Students’ overuse of proportionality on missing-value problems: How numbers may change solutions. Journal for Research in Mathematics Education, 40, 187–211.Google Scholar
  30. van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–64. doi: 10.1007/BF02504993.CrossRefGoogle Scholar
  31. Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127–174). New York, NY: Academic.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sylke Vandercruysse
    • 1
    • 2
    Email author
  • Judith ter Vrugte
    • 3
  • Ton de Jong
    • 3
  • Pieter Wouters
    • 4
  • Herre van Oostendorp
    • 4
  • Lieven Verschaffel
    • 5
  • Wim Van Dooren
    • 5
  • Jan Elen
    • 5
  1. 1.Center for Instructional Psychology and Technology, KU LeuvenKortrijkBelgium
  2. 2.KU LeuvenKortrijkBelgium
  3. 3.Department of Instructional Technology, Faculty of Behavioral SciencesUniversity of TwenteEnschedeThe Netherlands
  4. 4.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.KU LeuvenLeuvenBelgium

Personalised recommendations