Skip to main content

Formal and Informal Learning Environments: Using Games to Support Early Numeracy

  • Chapter
Describing and Studying Domain-Specific Serious Games

Abstract

Learning environments created to support children’s development of early numeracy often use games. This applies to both formal and informal learning environments. However, there is hardly any empirical research on the effectiveness of games being used in such learning environments. Moreover, it has rarely been discussed whether the games are appropriate from a mathematics educational perspective. In this article, we first describe quality criteria for mathematical learning games and provide an overview of studies that investigated the effectiveness of using games to support young children’s learning of early numeracy. We suggest that games for mathematical learning can differ significantly in their roles. Some games are intentional, structured, and with clear learning objectives, others have been designed for entertainment purposes, but nevertheless offer opportunities to learn mathematics. We then discuss in more detail the results of an intervention study as an example of a study on using games in informal learning environments. In this study, kindergarteners played conventional board games with classic dice. Although these games were not specifically designed to support numerical learning, the intervention effects were relatively high. However, the number of studies with systematic evaluation is very limited, so that more research is needed. More generally, we suggest that the term “game” should be used carefully and only for learning environments in which playing in its original meaning is an essential aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that Ritterfeld and Weber (2006) describe education and entertainment as two orthogonal dimensions to discuss the extent to which these dimensions are involved in individual activities. In contrast to this approach, we do not focus on the activities on the part of the individual, but rather on the intended purposes on the part of game designers.

References

  • Abt, C. (1987). Serious games. Boston, MA: University Press of America.

    Google Scholar 

  • Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Learning and Instruction, 7, 161–186. 10.1016/S0959-4752(96)00015-1.

    Article  Google Scholar 

  • Bruckman, A. (1999, March). Can educational be fun? Paper presented at the Game Developers Conference 1999, San Jose, CA.

    Google Scholar 

  • Bruner, J. (1999). The process of education. 25th printing. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Commission of the European Communities. (2001). Making a European area of lifelong learning a reality. Brussels, Belgium: COM 678.

    Google Scholar 

  • Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88, 715–730.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82, 64–81. doi:10.1348/2044-8279.002002.

    Article  Google Scholar 

  • Dolenc, R., Gasteiger, H., Kraft, G., & Loibl, G. (2005). ZahlenZauberei. Mathematik für Kindergarten und Grundschule. München, Düsseldorf, Stuttgart: Oldenbourg.

    Google Scholar 

  • Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: Der Beitrag von Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten. Berlin, Germany: Logos.

    Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. doi:10.1016/j.tics.2004.05.002.

    Article  Google Scholar 

  • Fröbel, F. (1838). Ein Ganzes von Spiel- und Beschäftigungskästen für Kindheit und Jugend. Erste Gabe: Der Ball als erstes Spielzeug des Kindes. In E. Blochmann (Ed.), Fröbels Theorie des Spiels I (2nd ed., pp. 16–38). Langensalza, Germany: Thüringer Verlagsanstalt.

    Google Scholar 

  • Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte. Grundlegung und Evaluation eines kompetenzorientierten Förderansatzes. Münster, Germany: Waxmann.

    Google Scholar 

  • Gasteiger, H. (2012). Fostering early mathematical competencies in natural learning situations. Foundation and challenges of a competence-oriented concept of mathematics education in kindergarten. Journal für Mathematik-Didaktik, 33(2), 181–201. doi:10.1007/s13138-012-0042-x.

    Article  Google Scholar 

  • Gasteiger, H. (2015). Early mathematics in play situations: Continuity of learning. In B. Perry, A. Gervasoni, & A. MacDonald (Eds.), Mathematics and transition to school. International perspectives (pp. 255–272). Singapore, Singapore: Springer. doi:10.1007/978-981-287-215-9_16.

    Google Scholar 

  • Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. The Journal of the Learning Sciences, 20, 169–206. doi:10.1080/10508406.2010.508029.

    Article  Google Scholar 

  • Habgood, M. P. J., & Overmars, M. (2006). The game maker’s apprentice: Game development for beginners. Berkeley, CA: Apress.

    Book  Google Scholar 

  • Huizinga, J. (1949). Homo ludens. London, England: Routledge.

    Google Scholar 

  • Kaufmann, L., Nuerk, H.-C., Graf, M., Krinzinger, H., Delazer, M., & Willmes, K. (2009). TEDI-MATH. Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse. Bern, Switzerland: Hans Huber, Hogrefe.

    Google Scholar 

  • Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526. doi:10.1016/j.learninstruc.2008.10.002.

    Article  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. doi:10.1016/j.neuroimage.2011.01.070.

    Article  Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. doi:10.1016/j.cognition.2003.11.004.

    Article  Google Scholar 

  • Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 11, 1–22.

    Article  Google Scholar 

  • Merriam-Webster. (2015). Game. http://www.merriam-webster.com/dictionary/game

  • Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135. doi:10.1016/j.learninstruc.2012.08.004.

    Article  Google Scholar 

  • Oerter, R., & Montada, L. (2008). Entwicklungspsychologie. Weinheim, Germany: Beltz.

    Google Scholar 

  • Pellegrini, A. D. (1991). Applied child study: A developmental approach. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Petermann, F., & Lipsius, M. (2011). Wechsler preschool and primary scale of intelligence III, German version. Frankfurt, Germany: Pearson Assessment.

    Google Scholar 

  • Pramling, I., & Carlsson, M. A. (2008). The playing learning child: Towards a pedagogy of early childhood. Scandinavian Journal of Educational Research, 52(6), 623–641. doi:10.1080/00313830802497265.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394. doi:10.1111/j.1467-8624.2007.01131.x.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146–159. doi:10.1016/j.appdev.2011.02.005.

    Article  Google Scholar 

  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472. doi:10.1016/j.cogdev.2009.09.003.

    Article  Google Scholar 

  • Rechsteiner, K., Hauser, B., & Vogt, F. (2012). Förderung der mathematischen Vorläuferfertigkeiten im Kindergarten: Spiel oder Training? In M. Ludwig & M. Kleine (Eds.), Beiträge zum Mathematikunterricht 2012 (pp. 677–680). Münster, Germany: WTM.

    Google Scholar 

  • Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169.

    Article  Google Scholar 

  • Ritterfeld, U., & Weber, R. (2006). Video games for entertainment and education. In P. Vorderer & J. Bryant (Eds.), Playing video games—Motives, responses, and consequences (pp. 399–413). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. doi:10.1006/ceps.1999.1020.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research. Learning trajectories for young children. New York, NY: Routledge.

    Google Scholar 

  • Siegler, R. S., & Opfer, J. E. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11, 655–661. doi:10.1111/j.1467-7687.2008.00714.x.

    Article  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560. doi:10.1037/a0014239.

    Article  Google Scholar 

  • Siraj-Blatchford, I., Sylva, K., Muttock, S., Gilden, R., & Bell, D. (2002). Researching effective pedagogy in the early years. Norwich, England: Queen’s Printer.

    Google Scholar 

  • Van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. Utrecht, The Netherlands: Freudenthal Institute.

    Google Scholar 

  • Van Oers, B. (2010). Emergent mathematical thinking in the context of play. Educational Studies of Mathematics, 74(1), 23–37. doi:10.1007/s10649-009-9225-x.

    Article  Google Scholar 

  • Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9, 41–57. doi:10.1007/s007870070008.

    Article  Google Scholar 

  • Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44, 588–596. doi:10.1037/0012-1649.44.2.588.

    Article  Google Scholar 

  • Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3, 224–234.

    Article  Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “the number race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 19. doi:10.1186/1744-9081-2-19.

    Article  Google Scholar 

  • Wittmann, E. C. (2006). Mathematische Bildung. In L. Fried & S. Roux (Eds.), Handbuch der Pädagogik der frühen Kindheit (pp. 205–211). Weinheim, Germany: Beltz.

    Google Scholar 

  • Wood, E., & Attfield, J. (2005). Play, learning and the early childhood curriculum. London, England: Sage.

    Google Scholar 

  • Young-Loveridge, J. M. (2004). Effects on early numeracy of a program using number books and games. Early Childhood Research Quarterly, 19(1), 82–98. doi:10.1016/j.ecresq.2004.01.001.

    Article  Google Scholar 

  • Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32. doi:10.1109/MC.2005.297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedwig Gasteiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gasteiger, H., Obersteiner, A., Reiss, K. (2015). Formal and Informal Learning Environments: Using Games to Support Early Numeracy. In: Torbeyns, J., Lehtinen, E., Elen, J. (eds) Describing and Studying Domain-Specific Serious Games. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-20276-1_14

Download citation

Publish with us

Policies and ethics