Advertisement

Formal and Informal Learning Environments: Using Games to Support Early Numeracy

  • Hedwig GasteigerEmail author
  • Andreas Obersteiner
  • Kristina Reiss
Part of the Advances in Game-Based Learning book series (AGBL)

Abstract

Learning environments created to support children’s development of early numeracy often use games. This applies to both formal and informal learning environments. However, there is hardly any empirical research on the effectiveness of games being used in such learning environments. Moreover, it has rarely been discussed whether the games are appropriate from a mathematics educational perspective. In this article, we first describe quality criteria for mathematical learning games and provide an overview of studies that investigated the effectiveness of using games to support young children’s learning of early numeracy. We suggest that games for mathematical learning can differ significantly in their roles. Some games are intentional, structured, and with clear learning objectives, others have been designed for entertainment purposes, but nevertheless offer opportunities to learn mathematics. We then discuss in more detail the results of an intervention study as an example of a study on using games in informal learning environments. In this study, kindergarteners played conventional board games with classic dice. Although these games were not specifically designed to support numerical learning, the intervention effects were relatively high. However, the number of studies with systematic evaluation is very limited, so that more research is needed. More generally, we suggest that the term “game” should be used carefully and only for learning environments in which playing in its original meaning is an essential aspect.

Keywords

Game-based learning Number games Play situations Early numeracy Mathematical learning environments 

References

  1. Abt, C. (1987). Serious games. Boston, MA: University Press of America.Google Scholar
  2. Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Learning and Instruction, 7, 161–186.  10.1016/S0959-4752(96)00015-1.CrossRefGoogle Scholar
  3. Bruckman, A. (1999, March). Can educational be fun? Paper presented at the Game Developers Conference 1999, San Jose, CA.Google Scholar
  4. Bruner, J. (1999). The process of education. 25th printing. Cambridge, MA: Harvard University Press.Google Scholar
  5. Commission of the European Communities. (2001). Making a European area of lifelong learning a reality. Brussels, Belgium: COM 678.Google Scholar
  6. Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88, 715–730.CrossRefGoogle Scholar
  7. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  8. Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82, 64–81. doi: 10.1348/2044-8279.002002.CrossRefGoogle Scholar
  9. Dolenc, R., Gasteiger, H., Kraft, G., & Loibl, G. (2005). ZahlenZauberei. Mathematik für Kindergarten und Grundschule. München, Düsseldorf, Stuttgart: Oldenbourg.Google Scholar
  10. Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: Der Beitrag von Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten. Berlin, Germany: Logos.Google Scholar
  11. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. doi: 10.1016/j.tics.2004.05.002.CrossRefGoogle Scholar
  12. Fröbel, F. (1838). Ein Ganzes von Spiel- und Beschäftigungskästen für Kindheit und Jugend. Erste Gabe: Der Ball als erstes Spielzeug des Kindes. In E. Blochmann (Ed.), Fröbels Theorie des Spiels I (2nd ed., pp. 16–38). Langensalza, Germany: Thüringer Verlagsanstalt.Google Scholar
  13. Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte. Grundlegung und Evaluation eines kompetenzorientierten Förderansatzes. Münster, Germany: Waxmann.Google Scholar
  14. Gasteiger, H. (2012). Fostering early mathematical competencies in natural learning situations. Foundation and challenges of a competence-oriented concept of mathematics education in kindergarten. Journal für Mathematik-Didaktik, 33(2), 181–201. doi: 10.1007/s13138-012-0042-x.CrossRefGoogle Scholar
  15. Gasteiger, H. (2015). Early mathematics in play situations: Continuity of learning. In B. Perry, A. Gervasoni, & A. MacDonald (Eds.), Mathematics and transition to school. International perspectives (pp. 255–272). Singapore, Singapore: Springer. doi: 10.1007/978-981-287-215-9_16.Google Scholar
  16. Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. The Journal of the Learning Sciences, 20, 169–206. doi: 10.1080/10508406.2010.508029.CrossRefGoogle Scholar
  17. Habgood, M. P. J., & Overmars, M. (2006). The game maker’s apprentice: Game development for beginners. Berkeley, CA: Apress.CrossRefGoogle Scholar
  18. Huizinga, J. (1949). Homo ludens. London, England: Routledge.Google Scholar
  19. Kaufmann, L., Nuerk, H.-C., Graf, M., Krinzinger, H., Delazer, M., & Willmes, K. (2009). TEDI-MATH. Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse. Bern, Switzerland: Hans Huber, Hogrefe.Google Scholar
  20. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526. doi: 10.1016/j.learninstruc.2008.10.002.CrossRefGoogle Scholar
  21. Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., et al. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. doi: 10.1016/j.neuroimage.2011.01.070.CrossRefGoogle Scholar
  22. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. doi: 10.1016/j.cognition.2003.11.004.CrossRefGoogle Scholar
  23. Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 11, 1–22.CrossRefGoogle Scholar
  24. Merriam-Webster. (2015). Game. http://www.merriam-webster.com/dictionary/game
  25. Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135. doi: 10.1016/j.learninstruc.2012.08.004.CrossRefGoogle Scholar
  26. Oerter, R., & Montada, L. (2008). Entwicklungspsychologie. Weinheim, Germany: Beltz.Google Scholar
  27. Pellegrini, A. D. (1991). Applied child study: A developmental approach. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  28. Petermann, F., & Lipsius, M. (2011). Wechsler preschool and primary scale of intelligence III, German version. Frankfurt, Germany: Pearson Assessment.Google Scholar
  29. Pramling, I., & Carlsson, M. A. (2008). The playing learning child: Towards a pedagogy of early childhood. Scandinavian Journal of Educational Research, 52(6), 623–641. doi: 10.1080/00313830802497265.CrossRefGoogle Scholar
  30. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394. doi: 10.1111/j.1467-8624.2007.01131.x.CrossRefGoogle Scholar
  31. Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146–159. doi: 10.1016/j.appdev.2011.02.005.CrossRefGoogle Scholar
  32. Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472. doi: 10.1016/j.cogdev.2009.09.003.CrossRefGoogle Scholar
  33. Rechsteiner, K., Hauser, B., & Vogt, F. (2012). Förderung der mathematischen Vorläuferfertigkeiten im Kindergarten: Spiel oder Training? In M. Ludwig & M. Kleine (Eds.), Beiträge zum Mathematikunterricht 2012 (pp. 677–680). Münster, Germany: WTM.Google Scholar
  34. Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169.CrossRefGoogle Scholar
  35. Ritterfeld, U., & Weber, R. (2006). Video games for entertainment and education. In P. Vorderer & J. Bryant (Eds.), Playing video games—Motives, responses, and consequences (pp. 399–413). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  36. Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. doi: 10.1006/ceps.1999.1020.CrossRefGoogle Scholar
  37. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research. Learning trajectories for young children. New York, NY: Routledge.Google Scholar
  38. Siegler, R. S., & Opfer, J. E. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.CrossRefGoogle Scholar
  39. Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11, 655–661. doi: 10.1111/j.1467-7687.2008.00714.x.CrossRefGoogle Scholar
  40. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560. doi: 10.1037/a0014239.CrossRefGoogle Scholar
  41. Siraj-Blatchford, I., Sylva, K., Muttock, S., Gilden, R., & Bell, D. (2002). Researching effective pedagogy in the early years. Norwich, England: Queen’s Printer.Google Scholar
  42. Van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. Utrecht, The Netherlands: Freudenthal Institute.Google Scholar
  43. Van Oers, B. (2010). Emergent mathematical thinking in the context of play. Educational Studies of Mathematics, 74(1), 23–37. doi: 10.1007/s10649-009-9225-x.CrossRefGoogle Scholar
  44. Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9, 41–57. doi: 10.1007/s007870070008.CrossRefGoogle Scholar
  45. Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44, 588–596. doi: 10.1037/0012-1649.44.2.588.CrossRefGoogle Scholar
  46. Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3, 224–234.CrossRefGoogle Scholar
  47. Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “the number race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 19. doi: 10.1186/1744-9081-2-19.CrossRefGoogle Scholar
  48. Wittmann, E. C. (2006). Mathematische Bildung. In L. Fried & S. Roux (Eds.), Handbuch der Pädagogik der frühen Kindheit (pp. 205–211). Weinheim, Germany: Beltz.Google Scholar
  49. Wood, E., & Attfield, J. (2005). Play, learning and the early childhood curriculum. London, England: Sage.Google Scholar
  50. Young-Loveridge, J. M. (2004). Effects on early numeracy of a program using number books and games. Early Childhood Research Quarterly, 19(1), 82–98. doi: 10.1016/j.ecresq.2004.01.001.CrossRefGoogle Scholar
  51. Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32. doi: 10.1109/MC.2005.297.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hedwig Gasteiger
    • 1
    Email author
  • Andreas Obersteiner
    • 2
  • Kristina Reiss
    • 2
  1. 1.Department of MathematicsLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.TUM School of EducationTechnische Universität MünchenMunichGermany

Personalised recommendations