Developing Adaptive Number Knowledge with the Number Navigation Game-Based Learning Environment

  • Boglárka BrezovszkyEmail author
  • Gabriela Rodríguez-Aflecht
  • Jake McMullen
  • Koen Veermans
  • Nonmanut Pongsakdi
  • Minna M. Hannula-Sormunen
  • Erno Lehtinen
Part of the Advances in Game-Based Learning book series (AGBL)


Research suggests that adaptivity with arithmetic problem solving can be developed by placing more focus on developing students’ understanding of the underlying numerical characteristics and connections during problem solving. For this reason, the present study aimed to explore how primary school students’ game performance using the “Number Navigation Game” (NNG) game-based learning environment was related to their development of adaptive number knowledge. NNG provides extensive opportunities for working strategically with various number patterns and number–operation combinations. Sixth grade students (N = 23) played NNG in pairs, once a week, for 7 weeks during math class. Students completed measures of adaptive number knowledge and arithmetic fluency during pre- and post-testing. Results show that students’ game performance had a unique contribution to explaining students’ adaptive number knowledge during post-test. This suggests that NNG is a promising game-based learning environment for developing adaptivity with arithmetic problem solving by enhancing students’ adaptive number knowledge.


Adaptive number knowledge Arithmetic problem solving Numerical relations Game-based learning environment 



The present study was funded by grant 274163 awarded to the last author by the Academy of Finland.


  1. Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). London, England: Lawrence Erlbaum.Google Scholar
  2. Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24, 294–323. doi: 10.2307/749464.CrossRefGoogle Scholar
  3. Blöte, A. W., Klein, A. S., & Beishuizen, M. (2000). Mental computation and conceptual understanding. Learning and Instruction, 10, 221–247. doi: 10.1016/S0959-4752(99)00028-6.CrossRefGoogle Scholar
  4. Brezovszky, B., Lehtinen, E., McMullen, J., Rodriguez, G., & Veermans, K. (2013). Training flexible and adaptive arithmetic problem solving skills through exploration with numbers. The development of Number Navigation Game. In C. Vaz de Carvalho, & P. Escuderio (Eds.), Proceedings of the 7th European Conference on Game Based Learning (ECGBL2013) (pp. 626–634). Retrieved from
  5. Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2003). Patterns of knowledge in children’s addition. Developmental Psychology, 39, 521–534. doi: 10.1037/0012-1649.39.3.521.CrossRefGoogle Scholar
  6. Chen, Z. -H., Liao, C. C. Y., Cheng, H. N. H., Yeh, C. Y. C., & Chan, T. -W. (2012). Influence of game quests on pupils’ enjoyment and goal-pursuing in math learning. Educational Technology & Society, 15, 317–327. Retrieved from
  7. Cheung, A. C., & Slavin, R. E. (2013). The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis. Educational Research Review, 9, 88–113. doi: 10.1016/j.edurev.2013.01.001.CrossRefGoogle Scholar
  8. Devlin, K. (2011). Mathematics education for a new era: Video games as a medium for learning. Natick, MA: AK Peters.CrossRefGoogle Scholar
  9. Dowker, A. (1992). Computational estimation strategies of professional mathematicians. Journal for Research in Mathematics Education, 23, 45–55. Retrieved from
  10. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20, 399–483. doi: 10.1207/S1532690XCI2004_1.CrossRefGoogle Scholar
  11. Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33, 441–467. doi: 10.1177/1046878102238607.CrossRefGoogle Scholar
  12. Gee, J. P. (2003). What video games have to teach us about literacy and learning. Hampshire, England: Palgrave Macmillan.Google Scholar
  13. Girard, C., Ecalle, J., & Magnan, A. (2013). Serious games as new educational tools: How effective are they? A meta‐analysis of recent studies. Journal of Computer Assisted Learning, 29, 207–219. doi: 10.1111/j.1365-2729.2012.00489.x.CrossRefGoogle Scholar
  14. Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. Journal of the Learning Sciences, 20, 169–206. doi: 10.1080/10508406.2010.508029.CrossRefGoogle Scholar
  15. Hatano, G., & Oura, Y. (2003). Commentary: Reconceptualizing school learning using insight from expertise research. Educational Researcher, 32, 26–29. Retrieved from
  16. Heirdsfield, A. M., & Cooper, T. J. (2004). Factors affecting the process of proficient mental addition and subtraction: Case studies of flexible and inflexible computers. The Journal of Mathematical Behavior, 23, 443–463. doi: 10.1016/j.jmathb.2004.09.005.CrossRefGoogle Scholar
  17. Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. Journal for Research in Mathematics Education, 35, 81–116. doi: 10.2307/30034933.CrossRefGoogle Scholar
  18. Hwang, G., & Wu, P. (2012). Advancements and trends in digital game‐based learning research: A review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 43, E6–E10. doi: 10.1111/j.1467-8535.2011.01242.x.CrossRefGoogle Scholar
  19. Järvelä, S., Lehtinen, E., & Salonen, P. (2000). Socio-emotional orientation as a mediating variable in teaching learning interaction: Implications for instructional design. Scandinavian Journal of Educational Research, 44, 293–306. doi: 10.1080/713696677.CrossRefGoogle Scholar
  20. Ke, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay? Computers & Education, 51, 1609–1620. doi: 10.1016/j.compedu.2008.03.003.CrossRefGoogle Scholar
  21. Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., …von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. doi: 10.1016/j.neuroimage.2011.01.070
  22. Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50, 853–864. doi: 10.1037/a0034321.CrossRefGoogle Scholar
  23. Lehtinen, E., Brezovszky, B., Rodríguez Padilla, G. Lehtinen, H. Hannula-Sormunen, M. M., McMullen, J., … Jaakkola, T. (2015). Number Navigation Game (NNG): Design principles and game description. In J. Torbeyns, E. Lehtinen & J. Elen (Eds.), Developing competencies in learners: From ascertaining to intervening (pp. xx-xx). New York, NY: Springer.Google Scholar
  24. Lowyck, J., Lehtinen, E., & Elen, J. (2004). Editorial: Students’ perspectives on learning environments. International Journal of Educational Research, 41, 401–406. doi: 10.1016/j.ijer.2005.08.008.CrossRefGoogle Scholar
  25. Martens, R., Gulikers, J., & Bastiaens, T. (2004). The impact of intrinsic motivation on e‐learning in authentic computer tasks. Journal of Computer Assisted Learning, 20, 368–376. doi: 10.1111/j.1365-2729.2004.00096.x.CrossRefGoogle Scholar
  26. McMullen, J., Brezovszky, B., Rodríguez Padilla, G., Pongsakdi, N., & Lehtinen, E. (2015). Adaptive number knowledge: Exploring the foundations of adaptivity with whole-number arithmetic. Manuscript submitted for publication.Google Scholar
  27. Metsämuuronen, J. (2006). Tutkimuksen tekemisen perusteet ihmistieteissä. [Principles of conducting scientific research in humanities]. Jyväskylä, Finland: Gummeruksen kirjapaino Oy.Google Scholar
  28. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. NCTM (Ed.), Reston, VA: National Council of Teachers of Mathematics. Retrieved from
  29. Plass, J. L., O’Keefe, P. A., Homer, B. D., Case, J., Hayward, E. O., Stein, M., & Perlin, K. (2013). The impact of individual, competitive, and collaborative mathematics gameplay on learning, performance, and motivation. Journal of Educational Psychology, 105, 1050–1066. doi:  10.1037/a0032688
  30. Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472. doi: 10.1016/j.cogdev.2009.09.003.CrossRefGoogle Scholar
  31. Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. Cambridge, MA: MIT Press.Google Scholar
  32. Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47, 1525–1538. doi: 10.1037/a0024997.CrossRefGoogle Scholar
  33. Schrank, F. A., McGrew, K. S., & Woodcock, R. W. (2001). Technical abstract (Woodcock-Johnson III Assessment Service Bulletin No. 2). Itasca, IL: Riverside Publishing. Retrieved from
  34. Seo, Y., & Bryant, D. P. (2009). Analysis of studies of the effects of computer-assisted instruction on the mathematics performance of students with learning disabilities. Computers & Education, 53, 913–928. doi: 10.1016/j.compedu.2009.05.002.CrossRefGoogle Scholar
  35. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444. doi: 10.1111/j.1467-8624.2004.00684.x.CrossRefGoogle Scholar
  36. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560. doi: 10.1037/a0014239.CrossRefGoogle Scholar
  37. Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50, 29–47. doi: 10.1023/A:1020572803437.CrossRefGoogle Scholar
  38. Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM—International Journal on Mathematics Education, 41, 541–555. doi: 10.1007/s11858-009-0195-3.CrossRefGoogle Scholar
  39. Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2009). Efficiency and flexibility of indirect addition in the domain of multi-digit subtraction. Learning and Instruction, 19, 1–12. doi: 10.1016/j.learninstruc.2007.12.002.CrossRefGoogle Scholar
  40. Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335–359. doi: 10.1007/BF03174765.CrossRefGoogle Scholar
  41. Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The number race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 1–16. doi: 10.1186/1744-9081-2-20.CrossRefGoogle Scholar
  42. Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105, 249–265. doi: 10.1037/a0031311.CrossRefGoogle Scholar
  43. Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., … Yukhymenko, M. (2012). Our princess is in another castle. A review of trends in serious gaming for education. Review of Educational Research, 82, 61–89. doi: 10.3102/0034654312436980

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Boglárka Brezovszky
    • 1
    Email author
  • Gabriela Rodríguez-Aflecht
    • 1
  • Jake McMullen
    • 1
  • Koen Veermans
    • 1
  • Nonmanut Pongsakdi
    • 1
  • Minna M. Hannula-Sormunen
    • 2
  • Erno Lehtinen
    • 1
  1. 1.Department of Teacher EducationCentre for Learning Research, University of TurkuTurkuFinland
  2. 2.Department of Teacher EducationTurku Institute for Advanced Studies, University of TurkuTurkuFinland

Personalised recommendations