Skip to main content

Role of Adenosine A2A Receptors in the Control of Neuroinflammation—Relevance for Parkinson’s Disease

  • Chapter
  • First Online:
  • 705 Accesses

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

Abstract

The antagonism of adenosine A2A receptors (A2AR) is currently a leading non-dopaminergic strategy to delay the onset of Parkinson’s disease (PD), but the underlying mechanism of action is still unclear. One prominent features of PD is the emergence of a neuroinflammation status supported by an increased density of activated microglia in afflicted brain regions, namely the substantia nigra and dorsolateral striatum since the onset of PD motor symptoms. This neuroinflammation might contribute for the etiology of PD since anti-inflammatory strategies can attenuate the behavioral and neurochemical changes in both PD patients and PD animal models. We now discuss the possibility that A2AR may control PD features through the control of microgliosis and neuroinflammation since: (1) microglia are endowed with A2AR; (2) A2AR are up-regulated in diseased conditions; (3) A2AR can control different facets of microglia function, from proliferation, migration and inflammatory reactivity; (4) A2AR antagonists effectively prevent microgliosis and prevent neuroinflammation, namely in animal models of PD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, McGeer PL (1989) Microglial response to 6-hydroxydopamine- induced substantia nigra lesions. Brain Res 489:247–253

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Woodroofe MN (2014) Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141:287–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antonucci F, Turola E, Riganti L et al (2012) Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J 31:1231–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13:221–227

    Article  CAS  PubMed  Google Scholar 

  • Barcia C, Ros CM, Ros-Bernal F et al (2013) Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol 261:60–66

    Article  CAS  PubMed  Google Scholar 

  • Béraud D, Hathaway HA, Trecki J et al (2013) Microglial activation and antioxidant responses induced by the Parkinson’s disease protein α-synuclein. J Neuroimmune Pharmacol 8:94–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Berendse HW, Booij J, Francot CM et al (2001) Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 50:34–41

    Article  CAS  PubMed  Google Scholar 

  • Bézard E, Dovero S, Prunier C et al (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21:6853–6861

    PubMed  Google Scholar 

  • Biber K, Neumann H, Inoue K et al (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602

    Article  CAS  PubMed  Google Scholar 

  • Boka G, Anglade P, Wallach D et al (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  CAS  PubMed  Google Scholar 

  • Brothers HM, Marchalant Y, Wenk GL (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett 480:97–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bura SA, Nadal X, Ledent C et al (2008) A2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain 140:95–103

    Article  CAS  PubMed  Google Scholar 

  • Carta AR, Kachroo A, Schintu N et al (2009) Inactivation of neuronal forebrain A2A receptors protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurochem 111:1478–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J et al (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J et al (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-α, IL-1β and IFN-γ. J Neurochem 81:150–157

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Pedata F (2008) Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptors. Curr Pharm Des 14:1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Are “resting” microglia more “m2”? Front Immunol 5:594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63:1155–1162

    Article  PubMed  Google Scholar 

  • Costa J, Lunet N, Santos C et al (2010) Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 20:S221–S238

    CAS  PubMed  Google Scholar 

  • Costello DA, Lyons A, Denieffe S et al (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 286:34722–34732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coull JA, Beggs S, Boudreau D et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Cristovão G, Pinto MJ, Cunha RA et al (2014) Activation of microglia bolsters synapse formation. Front Cell Neurosci 8:153

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–34

    Google Scholar 

  • Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis 20:S95–S116

    CAS  PubMed  Google Scholar 

  • Cunha RA, Chen JF, Sitkovsky MV (2007) Opposite modulation of peripheral inflammation and neuroinflammation by adenosine A2A receptors. In: Malva JO, Rego AC, Cunha RA, Oliveira CR (eds) Interaction between neurons and glia in aging and disease. Springer-Verlag, Berlim, pp 53–79

    Google Scholar 

  • Cutler DL, Tendolkar A, Grachev ID (2012) Safety, tolerability and pharmacokinetics after single and multiple doses of preladenant (SCH420814) administered in healthy subjects. J Clin Pharm Ther 37:578–587

    Article  CAS  PubMed  Google Scholar 

  • Dadon-Nachum M, Melamed E, Offen D (2011) The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43:470–477

    Article  CAS  PubMed  Google Scholar 

  • Dai SS, Zhou YG, Li W et al (2010) Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 30:5802–5810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dailey ME, Eyo U, Fuller L et al (2013) Imaging microglia in brain slices and slice cultures. Cold Spring Harb Protoc 2013:1142–1148

    Article  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  • Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259

    Article  CAS  PubMed  Google Scholar 

  • Depino AM, Earl C, Kaczmarczyk E et al (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742

    Article  PubMed  Google Scholar 

  • Dobbs RJ, Charlett A, Purkiss AG et al (1999) Association of circulating TNF-α and IL-6 with ageing and parkinsonism. Acta Neurol Scand 100:34–41

    Article  CAS  PubMed  Google Scholar 

  • Doens D, Fernández PL (2014) Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation 11: 48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dolga AM, Letsche T, Gold M et al (2012) Activation of KCNN3/SK3/KCa2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Glia 60:2050–2064

    Article  PubMed Central  PubMed  Google Scholar 

  • Du Y, Ma Z, Lin S et al (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan W, Gui L, Zhou Z et al (2009) Adenosine A2A receptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice. J Neurol Sci 285:39–45

    Article  CAS  PubMed  Google Scholar 

  • Eyo UB, Wu LJ (2013) Bidirectional microglia-neuron communication in the healthy brain. Neural Plast 2013:456857

    PubMed Central  PubMed  Google Scholar 

  • Färber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452:615–621

    Article  PubMed  CAS  Google Scholar 

  • Ferrari CC, Pott Godoy MC et al (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiol Dis 24:183–193

    Article  CAS  PubMed  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Ciruela F, Quiroz C et al (2007) Adenosine receptor heteromers and their integrative role in striatal function. ScientificWorldJournal 7:74–85

    Article  PubMed  Google Scholar 

  • Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160

    Article  CAS  PubMed  Google Scholar 

  • Fontainhas AM, Wang M, Liang KJ et al (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PloS One 6:e15973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin et al (1994) Evolution of nerve fiber degeneration in the striatum in the MPTP-treated squirrel monkey. Mol Neurobiol 9:163–170

    Google Scholar 

  • Fu R, Shen Q, Xu P et al (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74:995–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Hu X, Qian L et al (2008) Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116:593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Chen H, Schwarzschild MA et al (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76:863–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Christoffel F, Timmer J et al (1996) Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 29:37–42

    Article  CAS  PubMed  Google Scholar 

  • Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  • Godoy MC, Tarelli R, Ferrari CC et al (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894

    Article  PubMed Central  Google Scholar 

  • Gołembiowska K, Wardas J, Noworyta-Sokołowska K et al (2013) Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson’s disease. Neurotox Res 24:29–40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gomes CV, Kaster MP, Tomé AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  CAS  PubMed  Google Scholar 

  • Gomes C, Ferreira R, George J et al (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 10:16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21:169–184

    Google Scholar 

  • Gonçalves N, Simões AT, Cunha RA et al (2013) Caffeine and adenosine A2A receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado–Joseph disease. Ann Neurol 73:655–666

    Article  PubMed  CAS  Google Scholar 

  • Griffin R, Nally R, Nolan Y et al (2006) The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 99:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Grinberg YY, Milton JG, Kraig RP (2011) Spreading depression sends microglia on Levy flights. PloS One 6:e19294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gyoneva S, Davalos D, Biswas D et al (2014a) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62:1345–1360

    Article  PubMed Central  PubMed  Google Scholar 

  • Gyoneva S, Shapiro L, Lazo C et al (2014b) Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 67:191–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17

    Article  PubMed  Google Scholar 

  • Hamza TH, Zabetian CP, Tenesa A et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42:781–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Haskó G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hauser RA (2011) Future treatments for Parkinson’s disease: surfing the PD pipeline. Int J Neurosci 121:53–62

    Article  CAS  PubMed  Google Scholar 

  • He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187–193

    Article  CAS  PubMed  Google Scholar 

  • Hernandes MS, Santos GD, Café-Mendes CC et al (2013) Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration. PLoS One 8:e75532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrera AJ, Tomás-Camardiel M, Venero JL et al (2005) Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm 112:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hoshiko M, Arnoux I, Avignone E et al (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32:15106–15111

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363

    Article  CAS  PubMed  Google Scholar 

  • Ilschner S, Brandt R (1996) The transition of microglia to a ramified phenotype is associated with the formation of stable acetylated and detyrosinated microtubules. Glia 18:129–140

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Koizumi S, Kataoka A et al (2009) P2Y6-evoked microglial phagocytosis. Int Rev Neurobiol 85:159–163

    Article  CAS  PubMed  Google Scholar 

  • International Parkinson Disease Genomics Consortium (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649

    Article  CAS  Google Scholar 

  • Janßen S, Gudi V, Prajeeth CK et al (2014) A pivotal role of nonmuscle myosin II during microglial activation. Exp Neurol 261:666–676

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2014) An overview of adenosine A2A receptor antagonists in Parkinson’s disease. Int Rev Neurobiol 119:71–86

    Article  PubMed  Google Scholar 

  • Ji K, Akgul G, Wollmuth LP et al (2013) Microglia actively regulate the number of functional synapses. PloS One 8:e56293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones RS, Lynch MA (2015) How dependent is synaptic plasticity on microglial phenotype? Neuropharmacology. 96:3–10

    Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214

    Article  PubMed Central  PubMed  Google Scholar 

  • Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 3:493–514

    PubMed Central  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M et al (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  PubMed  Google Scholar 

  • Khairnar A, Plumitallo A, Frau L et al (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17:435–439

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Mohney RP, Wilson B et al (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    CAS  PubMed  Google Scholar 

  • Kim YS, Kim SS, Cho JJ et al (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711Kim YS, Choi DH, Block ML et al (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187

    Google Scholar 

  • Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16:724–739

    Article  CAS  PubMed  Google Scholar 

  • Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzebska I, Babiuch M, Joniec I et al (2002) Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int Immunopharmacol 2:1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska I, Litwin T, Joniec I et al (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 4:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Küst BM, Biber K, van Calker D et al (1999) Regulation of K+ channel mRNA expression by stimulation of adenosine A2a-receptors in cultured rat microglia. Glia 25:120–130

    Article  PubMed  Google Scholar 

  • Ladeby R, Wirenfeldt M, Garcia-Ovejero D et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Rev 48:196–206

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Du XF, Liu CS et al (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Li T, Pang S, Yu Y et al (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136:3578–3588

    Article  PubMed  Google Scholar 

  • Lim SH, Park E, You B et al (2013) Neuronal synapse formation induced by microglia and interleukin 10. PloS One 8:e81218

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling Z, Gayle DA, Ma SY et al (2002) In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 17:116–124

    Article  PubMed  Google Scholar 

  • Ling ZD, Chang Q, Lipton JW et al (2004) Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6- hydroxydopamine in the adult rat midbrain. Neuroscience 124:619–628

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinsons Dis 2011:327089

    Google Scholar 

  • Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:277–287

    Article  CAS  PubMed  Google Scholar 

  • Loram LC, Harrison JA, Sloane EM et al (2009) Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 29:14015–14025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40:139–156

    Article  CAS  PubMed  Google Scholar 

  • Maia S, Arlicot N, Vierron E et al (2012) Longitudinal and parallel monitoring of neuroinflammation and neurodegeneration in a 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 66:573–583

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Schwab C, Parent A et al (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    Article  CAS  PubMed  Google Scholar 

  • Mecha M, Feliú A, Iñigo PM et al (2013) Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis 59:141–150

    Article  CAS  PubMed  Google Scholar 

  • Melani A, Corti F, Cellai L et al (2014) Low doses of the selective adenosine A2A receptor agonist CGS 21680 are protective in a rat model of transient cerebral ischemia. Brain Res 1551:59–72

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 33:513–523

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L, Greco A, Potenza RL et al (2007) Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 66:363–371

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto A, Wake H, Moorhouse AJ et al (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Moehle MS, West AB (2014) M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neuroscience. doi: 10.1016/j.neuroscience.2014.11.018 (in press)

    Google Scholar 

  • Mogi M, Harada M, Kondo T et al (1994a) Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P et al (1994b) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T et al (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107:335–341

    Article  CAS  PubMed  Google Scholar 

  • Monif M, Reid CA, Powell KL et al (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29:3781–3791

    Article  CAS  PubMed  Google Scholar 

  • Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson’s disease. Handb Exp Pharmacol 193:589–615

    Google Scholar 

  • Murugan M, Ling EA, Kaur C (2013) Glutamate receptors in microglia. CNS Neurol Disord Drug Targets 12:773–784

    Article  CAS  PubMed  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402

    Article  CAS  PubMed  Google Scholar 

  • Neher JJ, Neniskyte U, Brown GC (2012) Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 3:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newby AC (1984) Adenosine and the concept of retaliatory metabolites. Trends Biochem Sci 9:42–44

    Article  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Ogata A, Tashiro K, Pradhan S (2000) Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology 55:602

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa K, Irino Y, Nakamura Y et al (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55:604–616

    Article  PubMed  Google Scholar 

  • Orr AG, Orr AL, Li XJ et al (2009) Adenosine A2A receptor mediates microglial process retraction. Nat Neurosci 12:872–878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    Article  CAS  PubMed  Google Scholar 

  • Ouchi Y, Yagi S, Yokokura M et al (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15:S200–S204

    Article  PubMed  Google Scholar 

  • Pabon MM, Bachstetter AD, Hudson CE et al (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palacios N, Gao X, McCullough ML et al (2012) Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 27:1276–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst CN, Gan WB (2010) Microglia dynamics and function in the CNS. Curr Opin Neurobiol 20:595–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pascual O, Ben Achour S, Rostaing P et al (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109:E197–E205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11:273–277

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2:e00047

    PubMed  Google Scholar 

  • Piccinin S, Di Angelantonio S, Piccioni A et al (2010) CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J Neuroimmunol 224:85–92

    Article  CAS  PubMed  Google Scholar 

  • Pierri M, Vaudano E, Sager T et al (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48:517–524

    Article  CAS  PubMed  Google Scholar 

  • Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28:455–474

    Article  CAS  PubMed  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD (2010) Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimers Dis 20:S205–S220

    CAS  PubMed  Google Scholar 

  • Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed Central  PubMed  Google Scholar 

  • Quintero EM, Willis L, Singleton R et al (2006) Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res 1093:198–207

    Article  CAS  PubMed  Google Scholar 

  • Rail D, Scholtz C, Swash M (1981) Post-encephalitic Parkinsonism: current experience. J Neurol Neurosurg Psychiatry 44:670–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao JS, Kellom M, Kim HW et al (2012) Neuroinflammation and synaptic loss. Neurochem Res 37:903–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebola N, Simões AP, Canas PM et al (2011) Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 117:100–111

    Article  CAS  PubMed  Google Scholar 

  • Roumier A, Bechade C, Poncer JC et al (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421–11428

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medina J, Ledent C, Carretón O et al (2011) The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J Psychopharmacol 25:550–564

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medina J, Pinto-Xavier A, Rodríguez-Arias M et al (2013) Influence of chronic caffeine on MDMA-induced behavioral and neuroinflammatory response in mice. Psychopharmacology 226:433–444

    Article  CAS  PubMed  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Ojala J, Suuronen T et al (2008) Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 12:2255–2262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Guajardo V, Barnum CJ, Tansey MG et al (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5:113–139

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Ferree A, Cooper O et al (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Santiago AR, Baptista FI, Santos PF et al (2014) Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014:465694Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm 70:373–381

    Google Scholar 

  • Saura J, Angulo E, Ejarque A et al (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95:919–929

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Schapansky J, Nardozzi JD, LaVoie MJ (2014) The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson’s disease. Neuroscience. doi:10.1016/j.neuroscience.2014.09.049 (in press)

    Google Scholar 

  • Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A2A antagonists in PD. Neurology 58:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K et al (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    Article  CAS  PubMed  Google Scholar 

  • Scianni M, Antonilli L, Chece G et al (2013) Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. J Neuroinflammation 10:108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Coelho JE, Ohtsuka N et al (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 28:2970–2975

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Canas PM, Garcia-Sanz P et al (2013) Adenosine A2A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 8:e80902

    Google Scholar 

  • Sierra A, Abiega O, Shahraz A et al (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Fronti Cell Neurosci 7:6

    CAS  Google Scholar 

  • Simões AP, Duarte JA, Agasse F et al (2012) Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway. J Neuroinflammation 9:204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV, Lukashev D, Apasov S et al (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134:57–66

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Behan WM (2007) Interleukin-1β but not tumor necrosis factor-α potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. J Neurosci Res 85:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4:371–379

    Article  PubMed  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149–161

    Article  PubMed  Google Scholar 

  • Trang T, Beggs S, Salter MW (2012) ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol 234:354–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tremblay ME, Stevens B, Sierra A et al (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Fujita Y, Tanaka T et al (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A et al (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217

    Article  CAS  PubMed  Google Scholar 

  • Walsh S, Finn DP, Dowd E (2011) Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson’s disease in the rat. Neuroscience 175:251–261

    Article  CAS  PubMed  Google Scholar 

  • Wei CJ, Augusto E, Gomes CA et al (2014) Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol Psychiatry 75:855–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    Google Scholar 

  • Wilms H, Zecca L, Rosenstiel P et al (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13:1925–1928

    Article  CAS  PubMed  Google Scholar 

  • Wong WT, Wang M, Li W (2011) Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission. Neuron Glia Biol 7:41–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao SQ, Li ZZ, Huang QY et al (2012) Genetic inactivation of the adenosine A2A receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem 123:100–112

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shen HY, Coelho JE et al (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Wilms H, Geick S et al (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Paolicelli RC, Sforazzini F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–42

    Google Scholar 

  • Zhang S, Wang XJ, Tian LP et al (2011) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 8:154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Malik A, Choi HB et al (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82:195–207

    Article  CAS  PubMed  Google Scholar 

  • Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA, NARSAD, Santa Casa da Misericórdia de Lisboa and co-funded by FEDER (QREN), through Programa Mais Centro under projects CENTRO-07-ST24-FEDER-002002, CENTRO-07-ST24-FEDER-002006 and CENTRO-07-ST24-FEDER-002008, and through Programa Operacional Factores de Competitividade—COMPETE and National funds via FCT—Fundação para a Ciência e a Tecnologia under project(s) Pest-C/SAU/LA0001/2013-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo A. Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes, C., George, J., Chen, JF., Cunha, R. (2015). Role of Adenosine A2A Receptors in the Control of Neuroinflammation—Relevance for Parkinson’s Disease. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_5

Download citation

Publish with us

Policies and ethics