Skip to main content

Imaging Studies with A2A Receptor Antagonists

  • Chapter
  • First Online:
Book cover The Adenosinergic System

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

  • 704 Accesses

Abstract

Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are increasingly used to understand differential diagnosis and pathophysiological progression of a variety of neurodegenerative and neuropsychiatric disorders. These techniques have also been instrumental in the process of drug discovery and development. Over the last decades, the development of high affinity and subtype-selective adenosine 2A (A2A) radiotracers has enable the non-invasive in vivo quantification of these receptors using SPECT and PET imaging. Data collected so far has confirmed the value of PET and SPECT techniques in assessing A2A changes in brain. These findings can foster the rapid widespread use of PET and SPECT A2A imaging, in particular now that suitable PET and SPECT probes with attractive in vivo properties are available for quantification of A2A in brain. In particular, the recent report of radiotracers labelled with fluorine-18 or iodine-123 that displayed improved binding potentials in vivo compared with radiotracers previously developed, provides the opportunity to further expand the global use of in vivo pre-clinical and clinical A2A imaging studies in neuroscience research. This book chapter provides a brief overview of the value of PET and SPECT in neuroscience, describes the key in vivo characteristics of PET and SPECT radiotracers developed to date for imaging A2A in brain and offers examples of previous pre-clinical and clinical studies that used PET and SPECT with A2A radiotracers to address a specific research question, with a particular focus on studies examining Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagille D, Barret O, Vala C et al (2013) Preclinical evaluation of [F-18]MNI-444. A promising PET imaging agent of adenosine A(2a) receptors. J Labelled Cpd Radiopharm 56:S308

    Google Scholar 

  • Angulo E, Casadó V, Mallol J et al (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  CAS  PubMed  Google Scholar 

  • Auchampach JA, Kreckler LM, Wan TC et al (2009) Characterization of the A2B Adenosine Receptor from Mouse, Rabbit, and Dog. J Pharmacol Exp Ther 329:2–13

    Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T et al (2003) Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Holschbach MH, Cremer M et al (2003a) Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. J Nucl Med 44:1682–1689

    CAS  PubMed  Google Scholar 

  • Bauer A, Holschbach MH, Meyer PT et al (2003b) In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 19:1760–1769

    Article  PubMed  Google Scholar 

  • Bhattacharjee AK, Lang L, Jacobson O et al (2011) Striatal adenosine A2A receptor mediated PET Imaging in 6-hydroxydopamine lesioned rats using [18F]-MRS5425. Nucl Med Biol 38:897–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blum T, Ermert J, Wutz W et al (2004) First no-carrier-added radioselenation of an adenosine-A1 receptor ligand. J Labelled Cpd Radiopharm 47:415–427

    Article  CAS  Google Scholar 

  • Brooks D (2005) Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRx 2:226–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks DJ, Papapetropoulos S, Vandenhende F et al (2010) An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 33:55–60

    Article  CAS  PubMed  Google Scholar 

  • Chen GJ, Harvey BK, Shen H et al (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84:1848–1855

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Janes K, Chen C et al (2012) Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 26:1855–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JF, Eltzsching HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costenla AR, De Mendonça A, Ribeiro JA (1999) Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Res 851:228–234

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Johansson B, Constantino MD et al (1996) Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H]CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn-Schmiedebergs Arch Pharmacol 353:261–271

    Article  CAS  PubMed  Google Scholar 

  • de Kemp RA, Epstein FH, Catana C et al (2010) Small-animal molecular imaging methods. J Nucl Med 51:18 S–32 S

    Google Scholar 

  • Dungo R, Deeks E (2013) Istradefylline: first global approval. Drugs 73:875–882

    Article  CAS  PubMed  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH et al (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415

    Article  CAS  PubMed  Google Scholar 

  • Elmenhorst D, Meyer PT, Matusch A et al (2012) Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and PET. J Nucl Med 53:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi M E, Ledent C, Parmentier M et al (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77

    Google Scholar 

  • Ferré S, Fuxe K, von Euler G et al (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Quiroz C et al (2007) Adenosine receptor heteromers and their integrative role in striatal function. ScientificWorldJournal 7:74–85

    Article  PubMed  Google Scholar 

  • Ferré S, Quiroz C, Woods AS et al (2008) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of g protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed Central  PubMed  Google Scholar 

  • Fishman P, Cohen S, Bar-Yehuda S (2013) Targeting the A3 adenosine receptor for glaucoma treatment. Mol Med Rep 7:1723–1725

    CAS  PubMed  Google Scholar 

  • Frank RA, Langstrom B, Antoni G et al (2007) The imaging continuum: bench to biomarkers to diagnostics. J Labelled Cpd Radiopharm 50:746–769

    Article  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–125

    CAS  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y et al (2003) Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX. Ann Nucl Med 17:511–515

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Agnati LF, Jacobsen K et al (2003) Receptor heteromerization in adenosine A2A receptor signaling. Relevance for striatal function and Parkinson’s disease. Neurology 61:S19–S23

    Article  CAS  PubMed  Google Scholar 

  • Garrett B, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 57:533–541

    Article  CAS  PubMed  Google Scholar 

  • Gouder N, Fritschy J, Boison D (2003) Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44:877–885

    Article  CAS  PubMed  Google Scholar 

  • Haberkorn U, Eisenhurt M (2005) Molecular imaging and therapy–a programme based on the development of new biomolecules. Eur J Nucl Med Mol Imaging 32:1354–1359

    Article  PubMed  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD et al (2003) Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    Article  CAS  PubMed  Google Scholar 

  • Heurteaux C, Lauritzen I, Widmann C et al (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K + channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92:4666–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirani E, Gillies J, Karasawa A et al (2001) Evaluation of [4-O-methyl-11C]KW-6002 as a potential PET ligand for mapping central adenosine A2A receptors in rats. Synapse 42:164–176

    Article  CAS  PubMed  Google Scholar 

  • Holschbach MH, Bier D, Stüsgen S et al (2006) Synthesis and evaluation of 7-amino-2-(2(3)-furyl)-5-phenylethylamino-oxazolo[5,4-d]pyrimidines as potential A2A adenosine receptor antagonists for positron emission tomography (PET). Eur J Med Chem 41:7–15

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Kurokawa M, Aoyama S et al (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270

    Article  CAS  PubMed  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Furuta R, Shimada J et al (1995) Synthesis and preliminary evaluation of [11C]KF15372, a selective adenosine A1 antagonist. Appl Radiat Isot 46:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S et al (2000) 11 C-Labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 41:345–35

    Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S et al (2000a) 11 C-Labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 2000 41:345–335

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J et al (2000b) Further characterization of a CNS adenosine A2a receptor ligand [11C] KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 14:81–89

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J et al (2000c) Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography. Ann Nucl Med 14:461–466

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Shimada J, Wang WF et al (2000d) Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann Nucl Med 14:247–253

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Hayakawa N et al (2002) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: Comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Kawamura K, Kimura Y et al (2003) Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 17:457–462

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Mishina M, Kimura Y et al (2005a) First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 55:133–136

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Tsukada H, Kimura Y et al (2005b) In vivo evaluation of [11C]TMSX and [11C]KF21213 for mapping adenosine A2A receptors: brain kinetics in the conscious monkey and P-glycoprotein modulation in the mouse brain. J Cereb Blood Flow Metab 25:S658

    Article  Google Scholar 

  • Ishiwata K, Kimura Y, de Vries EFJ et al (2007) PET tracers for mapping adenosine receptors as probes for diagnosis of CNS disorders. CNS Agents Med Chem 7:57–77

    CAS  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanda T, Tashiro T, Kuwana Y et al (1998) Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 24:2857–2860

    Article  Google Scholar 

  • Kase H (2001) New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia. Biosci Biotechnol Biochem 65:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Kiesewetter DO, Lang L, Ma Y et al (2009) Synthesis and characterization of [76Br]-labeled high affinity A3 adenosine receptor ligands for positron emission tomography. Nucl Med Biol 36:3–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koga K, Kurokawa M, Ochi M et al (2000) Adenosine A(2 A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kulisevsky J, Barbanoj M, Gironell A et al (2002) A double-blind crossover, placebo-controlled study of the adenosine A2A antagonist theophylline in Parkinson’s disease. Clin Neuropharmacol 25:25–31

    Article  CAS  PubMed  Google Scholar 

  • Lammerstma A, Hume S (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 338:674–678

    Google Scholar 

  • Lindström K, Ongini E, Fredholm BB (1996) The selective adenosine A2A receptor antagonist SCH 58261 discriminates between two different binding sites for [3H]-CGS 21680 in the rat brain. Naunyn-Schmiedebergs Arch Pharmacol 354:539–541

    Article  PubMed  Google Scholar 

  • Loane C, Politis M (2011) Positron emission tomography neuroimaging in Parkinson’s disease. Am J Transl Res 3:323–341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670

    Article  CAS  PubMed  Google Scholar 

  • Maemoto T, Tada M, Mihara T et al (2004) Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci 96:42–52

    Article  CAS  PubMed  Google Scholar 

  • Marek K, Innis R, van Dyck C et al (2001) [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57:2089–2094

    Article  CAS  PubMed  Google Scholar 

  • Márián T, Boros I, Lengyel Z et al (1999) Preparation and primary evaluation of [11C]CSC as a possible tracer for mapping adenosine A2A receptors by PET. Appl Radiat Isot 50:887–893

    Article  PubMed  Google Scholar 

  • Mariani G, Bruselli L, Duatti A (2008) Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 35:1560–1565

    Article  PubMed  Google Scholar 

  • Matsuya T, Takamatsu H, Murakami Y et al (2005) Synthesis and evaluation of [11C]FR194921 as a nonxanthine-type PET tracer for adenosine A1 receptors in the brain. Nucl Med Biol 32:837–844

    Article  CAS  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A et al (2006a) 18F-CPFPX PET: on the generation of parametric images and the effect of scan duration. J Nucl Med 47:200–207

    PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A et al (2006b) A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 32:1100–1105

    Article  PubMed  Google Scholar 

  • Mihara T, Mihara K, Yarimizu J et al (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-Amino-3-(4-fluorophenyl)pyrazin-2-yl]– 1-isopropylpyridine-2(1 H)-one (ASP5854), in models of Parkinson’s disease and cognition. J Pharmacol Exp Ther 323:708–719

    Article  CAS  PubMed  Google Scholar 

  • Mihara T, Noda A, Arai H et al (2008) Brain adenosine A2A receptor occupancy by a novel A1/A2A receptor antagonist, ASP5854, in Rhesus monkeys: relationship to anticataleptic effect. J Nucl Med 49:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y et al (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 61:778–784

    Article  CAS  PubMed  Google Scholar 

  • Mishina M, Ishiwata K, Naganawa M et al (2011) Adenosine A2A receptors measured with [11C]TMSX PET in the striata of Parkinson’s disease patients. PLoS One 6:e17338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitterhauser M, Haeusler D, Mien LK et al (2009) Automatisation and first evaluation of [18F]FE@SUPPY:2, an alternative PET-tracer for the adenosine A3 receptor: a comparison with [18F]FE@SUPPY. Open Nucl Med Journal 1:15–23

    Article  CAS  Google Scholar 

  • Moresco RM, Todde S, Belloli S et al (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413

    Article  CAS  PubMed  Google Scholar 

  • Müller CE, Ferré S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov 2:1–21

    Article  PubMed  Google Scholar 

  • Müller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308

    Article  PubMed Central  PubMed  Google Scholar 

  • Naganawa M, Kimura Y, Mishina M et al (2007) Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography. Eur J Nucl Med Mol Imaging 34:679–687

    Article  CAS  PubMed  Google Scholar 

  • Noguchi J, Ishiwata K, Wakabayashi S et al (1998) Evaluation of carbon-11-labeled KF17837: a potential CNS adenosine A2a receptor ligand. J Nucl Med 39:498–503

    CAS  PubMed  Google Scholar 

  • Nonaka Y, Shimada J, Nonaka H et al (1993) Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine. J Med Chem 36:3731–3733

    Article  CAS  PubMed  Google Scholar 

  • Normile HJ, Barraco RA (1991) N6-cyclopentyladenosine impairs passive avoidance retention by selective action at A1 receptors. Brain Res Bull 27:101–104

    Article  CAS  PubMed  Google Scholar 

  • Parkinson study group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson’s disease progression. JAMA 287:1653–1661

    Article  Google Scholar 

  • Plamondon H, Blondeau N, Heurteaux C et al (1999) Mutually Protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and KATP channels. J Cereb Blood Flow Metab 19:1296–1308

    Article  CAS  PubMed  Google Scholar 

  • Ramlackhansingh AF, Bose SK, Ahmed I et al (2011) Adenosine 2 A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76:1811–1816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosi S, McGann K, Hauss-Wegrzyniak B et al (2003) The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 86:220–227

    Article  CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    Article  CAS  PubMed  Google Scholar 

  • Ruth T (2009) The uses of radiotracers in the life sciences. Rep Prog Phys 72:1–23

    Article  Google Scholar 

  • Sakata M, Oda K, Toyohara et al (2013) Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 27:285–296

    Google Scholar 

  • Salvadori P (2008) Radiopharmaceuticals, drugs development and pharmaceutical regulations in Europe. Curr Radiopharm 1:7–11

    Article  CAS  Google Scholar 

  • Schwarz J, Storch A, Koch W et al (2004) Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med 45:1694–1697

    CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A2A antagonists in PD. Neurology 58:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • Sihver W, Schulze A, Wutz W et al (2009) Autoradiographic comparison of in vitro binding characteristics of various tritiated adenosine A2A receptor ligands in rat, mouse and pig brain and first ex vivo results. Eur J Pharmacol 616:107–114

    Article  CAS  PubMed  Google Scholar 

  • Stone-Elander S, Thorell JO, Eriksson L et al (1997) In vivo biodistribution of [N-11 C-methyl]KF 17837 using 3-D-PET: evaluation as a ligand for the study of adenosine A2A receptors. Nucl Med Biol 24:187–191

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Hall H, Sedvall G et al (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    Article  CAS  PubMed  Google Scholar 

  • Tavares AAS, Batis J, Barret O et al (2013a) In vivo evaluation of [123I]MNI-420: A novel single photon emission computed tomography radiotracer for imaging of adenosine 2 A receptors in brain. Nucl Med Biol 40:403–409

    Article  CAS  PubMed  Google Scholar 

  • Tavares AAS, Batis JC, Papin C et al (2013b) Kinetic modeling, test–retest, and dosimetry of 123I-MNI-420 in humans. J Nucl Med 54:1760–1767

    Article  CAS  PubMed  Google Scholar 

  • Wang WF, Ishiwata K, Nonaka H et al (2000) Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A2A receptors with positron emission tomography. Nucl Med Biol 27:541–546

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Salinas C, Tang SP et al (2013) Evaluation of the adenosine A2A receptor ligand [11C] SCH442416 in the rodent brain. J Nucl Med 54:382

    Google Scholar 

  • Xu K, Xu YH, Chen JF et al (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 167:475–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Alexandre S. Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tavares, A., Barret, O., Seibyl, J., Tamagnan, G. (2015). Imaging Studies with A2A Receptor Antagonists. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_11

Download citation

Publish with us

Policies and ethics