Skip to main content

Effect of Polymer Network in Polymer Dispersed Ferroelectric Liquid Crystals (PSFLC)

  • Chapter
Liquid Crystalline Polymers

Abstract

Polymer cross links chains can make a tremendous interaction with the ferroelectric ordering of a polymer stabilized ferroelectric liquid crystals (PSFLC). After suitable consideration of such interaction, we theoretically can study the effect of free volumes associated with the creation of bulk free energy of such PSFLC system. The variation of spontaneous polarization, tilt angle, rotational viscosity and dielectric constant depending on the assumed interactions can be demonstrated theoretically. A shift of transition temperature highly influenced by this interaction between polymer network and liquid crystal molecules was studied. By introducing the effect of cross-linked chains of polymer network we can also study the reduced behavior of the spontaneous polarization, the tilt angle and rotational viscosity with the increase of polymer concentration in the composite system. It was observed that the interacting cross-linked polymer chains played an important role in promoting multistability and resolution of the memory state in the composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer P, Dierking I (2005) Quantitative experimental determination of the Landau-potential of chiral enantiomer doped ferroelectric liquid crystals. Eur Phys J E 18(4):373–381

    Article  Google Scholar 

  • Archer P, Dierking I (2008) Elastic coupling in polymer stabilized ferroelectric liquid crystals. J Phys D: Appl Phys 41(15):155422

    Article  Google Scholar 

  • Archer P, Dierking I (2009) Electro-optic properties of polymer-stabilized ferroelectric liquid crystals before, during and after photo-polymerization. J Opt A: Pure Appl Opt 11(2):024022

    Article  Google Scholar 

  • Archer P, Dierking I, Osipov MA (2008) Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory. Phys Rev E 78(5):051703

    Article  Google Scholar 

  • Bahr CH, Heppke G (1990) Influence of electric field on a first-order smectic-A-ferroelectric-smectic-C liquid-crystal phase transition: a field-induced critical point. Phys Rev A 41(8):4335–4342

    Article  Google Scholar 

  • Bartoš J (1996) Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data. Colloid Polym Sci 274(1):14–19

    Article  Google Scholar 

  • Blinov LM, Beresnev LA, Haase W (1995) Tilt angle, polarization and susceptibility and Landau expansion coefficients for multicomponent ferroelectric liquid crystal mixtures. Ferroelectrics 174:221–239

    Article  Google Scholar 

  • Brehmer M, Zentel R, Gieβelmann F, Germer R, Zugenmaier P (1996) Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liq Cryst 21(4):589–596

    Article  Google Scholar 

  • Broer DJ, Finkelmann H, Kondo K (1988) In-situ photopolarization of an oriented liquid-crystalline acrylate. Makromol Chem 189:185–194

    Article  Google Scholar 

  • Broer DJ, Boven J, Mol GN, Challa G (1989a) In-situ photopolymerization of oriented liquid crystalline acrylates. Makromol Chem 190:2255–2268

    Article  Google Scholar 

  • Broer DJ, Hikmet RAM, Challa G (1989b) Influence of a lateral methyl substituent on monomer and oriented network properties of a mesogenic diacrylate. Makromol Chem 190:3201–3215

    Article  Google Scholar 

  • Broer DJ, Mol GN, Challa G (1989c) In-situ oriented polymer networks from a mesogenic diacrylate. Makromol Chem 190:19–30

    Article  Google Scholar 

  • Broer DJ, Gossink RG, Hikmet RAM (1990) Oriented polymer networks obtained by photopolymerization liquid crystal-crystalline monomers. Angew Makromol Chem 183:45–66

    Article  Google Scholar 

  • Broer DJ, Mol GN, Challa G (1991) Influence of alkylene spacer on the properties of the mesogenic monomers and the formation and properties of oriented polymer networks. Makromol Chem 192:59–74

    Article  Google Scholar 

  • Chiccoli C, Pasini P, Skačej G, Zannoni C, Žumer S (2002) Polymer network-induced ordering in a nematogenic liquid: a Monte Carlo study. Phys Rev E 65:051703

    Article  Google Scholar 

  • Clark NA, Lagerwall ST (1980) Submicrosecond bistable electro-optic switching liquid crystals. Appl Phys Lett 36:899

    Article  Google Scholar 

  • Crawford GP, Žumer S (1996) Liquid crystals in complex geometries formed by polymer and porous networks. Taylor and Francis, London

    Google Scholar 

  • Crawford GP, Scharkowski A, Fung YK, Doane JW, Žumer S (1995) Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix. Phys Rev E 52:R1273

    Article  Google Scholar 

  • de Gennes PG, Matricon J (1964) Collective modes of vortex lines in superconductors of the second kind. Rev Mod Phys 36(1):45–49

    Article  Google Scholar 

  • de Gennes PG, Cifferi A, Kringbaum WR, Meyer RB (1992) Polymer liquid crystals. Academic, New York

    Google Scholar 

  • Dierking I, Kosbar LL, Lowe AC, Held GA (1998a) Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures-II: the effect of curing conditions. Liq Cryst 24:397–406

    Article  Google Scholar 

  • Dierking I, Kosbar LL, Lowe AC, Held GA (1998b) Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures-I: the influence of curing temperature. Liq Cryst 24(3):387–395

    Article  Google Scholar 

  • Dierking I, Komitov L, Lagerwall ST, Wittig T, Zentel R (1999) Horizontal chevron domain formation and smectic layer reorientation in SmC* liquid crystals stabilized by polymer networks. Liq Cryst 26(10):1511–1519

    Article  Google Scholar 

  • Dierking I, Osipov MA, Lagerwall ST (2000) The effect of a polymer network on smectic phase structure as probed by polarization measurements on a ferroelectric liquid crystal. Eur Phys J E 2(4):303–309

    Article  Google Scholar 

  • Dlubek G, Sen Gupta A, Pointeck J, Krause-Rehberg R, Kaspar H, Lochhaas KH (2004) Temperature dependence of the free volume in fluoroelastomers from positron lifetime and PVT experiments. Macromolecules 37(17):6606–6618

    Article  Google Scholar 

  • Dupasquier A, Mills AP Jr (1995) Positron spectroscopy of solids. In: Proceedings of the international school of physics Enrico Fermi, Course CXXV, Amsterdam and SIF Bologna, IOS Press

    Google Scholar 

  • Dvorak V (1974) Improper ferroelectrics. Ferroelectrics 7(1):1–9

    Article  Google Scholar 

  • Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63(1–2):51–58

    Article  Google Scholar 

  • Fujikake H, Takizawa K, Kikuchi H, Fujii T, Kawakita M, Aida T (1997) Polymer stabilized ferroelectric liquid crystals devices with grayscale memory. Jpn J Appl Phys 36:6449–6454

    Article  Google Scholar 

  • Fujikake H, Aida T, Takizawa K, Kikuchi H, Fujii T, Kawakita M (1999) Study of smectic layer structure of polymer-stabilized ferroelectric liquid crystal with grayscale memory. Electron Commun Jpn 82(8):1–8

    Article  Google Scholar 

  • Fujikake H, Sato H, Murashige T (2004) Polymer-stabilized ferrielectric liquid crystal for flexible displays. Displays 25(1):3–8

    Article  Google Scholar 

  • Fujisawa T, Nishiyama I, Hatsusaka K, Takeuchi K, Takatsu H, Kobayashi S (2008) Field sequential full color LCDs using polymer-stabilized V-shaped ferroelectric liquid crystals. Ferroelectrics 364(1):78–85

    Article  Google Scholar 

  • Fung YK, Borštnik A, Žumer S, Yang DK, Doane JW (1997) Pretransitional nematic ordering in liquid crystals with dispersed polymer networks. Phys Rev E 55:1637–1645

    Article  Google Scholar 

  • Furue H, Miyama T, Limura Y, Hasebe H, Takatsu H, Kobayashi S (1997) Mesogenic polymer stabilized ferroelectric liquid crystal display exhibiting monostability with high contrast ratio and grayscale capability. J Appl Phys 36:L1517–L1519

    Article  Google Scholar 

  • Furue H, Iimura Y, Hasebe H, Takatsu H, Kobayashi S (1998) The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals. Mol Cryst Liq Cryst Sci Technol A 317(1):259–271

    Article  Google Scholar 

  • Furue H, Takahashi T, Kobayashi S (1999) Monostabilization of surface-stabilized ferroelectric liquid crystal using polymer stabilization. Jpn J Appl Phys 38(1):5660

    Article  Google Scholar 

  • Furue H, Yokoyama H, Kobayashi S (2001) Newly developed polymer-stabilized ferroelectric liquid crystals: microsized bistable domains and monostable V-shaped switching. Jpn J Appl Phys 40:5790–5794

    Article  Google Scholar 

  • Furue H, Takahashi T, Kobayashi S, Yokoyama H (2002) Models of molecular alignment structure in polymer-stabilized ferroelectric liquid crystals. Jpn J Appl Phys 40(1):7230–7233

    Article  Google Scholar 

  • Gieβelmann F, Zugenmaier P (1995) Mean-field coefficients and the electroclinic effect of a ferroelectric liquid crystal. Phys Rev E 52(2):1762–1772

    Article  Google Scholar 

  • Gieβelmann F, Heimann A, Zugenmaier P (1997) Experimental determination of Landau-expansion coefficients in ferroelectric liquid crystals. Ferroelectrics 200:237–256

    Article  Google Scholar 

  • Guymon CA, Hoggan EN, Walba DM, Clark NA, Bowman CN (1995) Phase behaviour and electro-optic characteristics of a polymer stabilized ferroelectric liquid crystal. Liq Cryst 19:719–727

    Article  Google Scholar 

  • Guymon CA, Dougan LA, Martens PJ, Clark NA, Walba DM, Bowman CN (1998) Polymerization conditions and electrooptic properties of polymer-stabilized ferroelectric liquid crystals. Chem Mater 10:2378–2388

    Article  Google Scholar 

  • Hikmet RAM, Boots HMJ, Michielsen M (1995) Ferroelectric liquid crystal gels—network stabilized ferroelectric display. Liq Cryst 19:65–74

    Article  Google Scholar 

  • Inoue T, Higuchi N, Furue H (2008) The effect of polymer doping on the formation of helical structure in ferroelectric liquid crystals. Ferroelectrics 364:113–120

    Article  Google Scholar 

  • Jean YC (1990) Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchem J 42:72–102

    Article  Google Scholar 

  • Jean YC, Nakanishi H, Hao LY, Sandreczki TC (1990) Anisotropy of free-volume hole dimensions in polymers probed by positron annihilation spectroscopy. Phys Rev B 42:9705–9708

    Article  Google Scholar 

  • Jean YC, Mallon PE, Schrader DM (2003) Principles and application of positron and positronium chemistry. World Scientific, Singapore

    Book  Google Scholar 

  • Karapinar R, Neill MO, Hird M (2002) Polymer dispersed ferroelectric liquid crystal films with high electro-optic quality. J Phys D Appl Phys 35(9):900–903

    Article  Google Scholar 

  • Kitzerow HS, Molsen H, Heppke G (1992) Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals. Appl Phys Lett 60:3093

    Article  Google Scholar 

  • Kossyrev PA, Qi J, Priezjev NV, Pelcovits RA, Crawford GP (2002) Virtual surface, director domain and the Frèedericksz transition in polymer-stabilized liquid crystals. Appl Phys Lett 81:2986

    Article  Google Scholar 

  • Kundu S, Roy SS, Pal Majumder T, Roy SK (2000) Spontaneous polarization and response time of a polymer dispersed ferroelectric liquid crystal (PDFLC). Ferroelectrics 243:197–206

    Article  Google Scholar 

  • Lahiri T, Pal Majumder T (2011) Theoretical approach to study the effect of free volumes on the physical behavior of polymer stabilized ferroelectric liquid crystal molecules. J Appl Phys 109:114109

    Article  Google Scholar 

  • Lahiri T, Pal Majumder T (2012) The effect of cross-linked chains of polymer network on the memory states of polymer stabilized ferroelectric molecules. Polymer 53:2121–2127

    Article  Google Scholar 

  • Lee K, Suh SW, Lee SD (1994a) Fast linear electro-optical switching properties of polymer-dispersed ferroelectric liquid crystals. Appl Phys Lett 64:718

    Article  Google Scholar 

  • Lee K, Suh SW, Lee SD, Kim CY (1994b) Ferroelectric response of polymer-dispersed chiral smectic C* liquid crystal composites. J Korean Phys Soc 27(1):86

    Google Scholar 

  • Lee JH, Lim TK, Kwon YW, Jin J (2005) Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules. J Appl Phys 97(8):084907

    Article  Google Scholar 

  • Lee JH, Lim TK, Kwon YW, Jin J, Kwon SB, Shin ST (2006) Realization of grayscale memory operation in s step-growth based polymer-stabilized ferroelectric liquid crystal system. Jpn J Appl Phys 45(1):5872

    Article  Google Scholar 

  • Levstik A, Carlsson T, Filipic C, Levstik I, Zeks B (1987) Goldstone and soft mode at the smectic-A-smectic-C* phase transition studied by dielectric relaxation. Phys Rev A 35:3527–3534

    Article  Google Scholar 

  • Li J, Wang Z, Cai Y, Huang X (1998) Study of EO properties of polymer network stabilized of ferroelectric liquid crystal in smectic C* phase. Ferroelectrics 213:91–98

    Article  Google Scholar 

  • Li J, Zhu X, Xuan L, Huang X (2002) V-shaped electro-optic characteristics in FLC gels. Ferroelectrics 277:85–105

    Article  Google Scholar 

  • Lo VC (2003) Simulation of thickness effect in thin ferroelectric films using Landau-Khalatkinov theory. J Appl Phys 94(5):3353

    Article  Google Scholar 

  • Lueder E, Puecke M, Polach S (1998) Proceedings of the 18th IDRC, Asia Display 98’, Seoul Korea, pp 173

    Google Scholar 

  • Ma RQ, Yang DK (2000) Frèedericksz transition in polymer-stabilized nematic liquid crystals. Phys Rev E 61:1567–1573

    Article  Google Scholar 

  • Miyazaki Y, Furue H, Takahashai T, Shikada M, Kobayashi S (2001) Mesogenic polymer-stabilized FLCDs exhibiting asymmetric and symmetric (V-shape) electro-optical characteristics. Mol Cryst Liq Cryst 364:491–499

    Article  Google Scholar 

  • Mogensen OE (1995) Positron annihilation in chemistry. Springer, Berlin

    Book  Google Scholar 

  • Molsen H, Kitzerow HS (1994) Bistability in polymer-dispersed ferroelectric liquid crystals. J Appl Phys 75:710–716

    Article  Google Scholar 

  • Murashige T, Fujikake H, Ikehata S, Sato F (2004) Memory effect of ferroelectric liquid crystal stabilized by polymer fibers. Electron Commun Jpn 87(4):16–24

    Article  Google Scholar 

  • Musevic I, Blinc R, Zeks B (2002) The physics of ferroelectric and antiferroelectric liquid crystals. World Scientific, Singapore

    Google Scholar 

  • Nelson DR (2002) Defects and geometry in condensed matter physics. University Press, Cambridge

    Google Scholar 

  • Pal Majumder T, Mitra M, Roy SK (1994) Dielectric relaxation and rotational viscosity of a ferroelectric liquid crystal mixture. Phys Rev E 50(6):4976–4800

    Google Scholar 

  • Petit M, Daoudi A, Ismaili M, Buisine JM (2006) Electroclinic effect in a chiral smectic-A liquid crystal stabilized by an anisotropic polymer network. Phys Rev E 74:061707

    Article  Google Scholar 

  • Petit M, Hemine J, Daoudi A, Ismaili M, Buisine JM, Da Costa A (2009) Effect of the network density on dynamics of the soft mode and the Goldstone modes in short-pitch ferroelectric liquid crystals stabilized by an anisotropic polymer network. Phys Rev E 79:031705

    Article  Google Scholar 

  • Pirs J, Blinc R, Marin B, Pirs S, Doane JW (1995) Polymer network volume stabilized ferroelectric liquid crystal displays. Mol Cryst Liq Cryst 264:155–163

    Article  Google Scholar 

  • Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations, 2nd edn. Chapman & Hall, Boca Raton

    Google Scholar 

  • Sato H, Fujikake H, Lino Y, Kawakita M, Kikuchi H (2002) Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks. Jpn J Appl Phys 41:5302–5306

    Article  Google Scholar 

  • Sato H, Fujikake H, Kikuchi H, Kurita T (2003) Rollable polymer stabilized ferroelectric liquid crystal device using thin plastic substrates. Opt Rev 10(5):352–356

    Article  Google Scholar 

  • Schrader DM, Jean YC (1988) Positron and positronium chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Shinkawa K, Takahashi H, Furue H (2008) Ferroelectric liquid crystal cell with phase separated composite organic film. Ferroelectrics 364:107–112

    Article  Google Scholar 

  • Simha R, Somcynsky T (1969) On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2:342–350

    Article  Google Scholar 

  • Singh U (2011) Effect of polymer networks on the smectic-C* phase of a ferroelectric liquid crystal: high-resolution x-ray studies. Phys Rev E 83:061707

    Article  Google Scholar 

  • Skarp K (1988) Rotational viscosities in ferroelectric smectic liquid crystals. Ferroelectrics 84:119–142

    Article  Google Scholar 

  • Suresh S, Chien LC (2003) Electro-optical properties of polymer-stabilized ferroelectric liquid crystal. Ferroelectrics 287:1–6

    Article  Google Scholar 

  • Takahashi T, Umeda T, Furue H, Kobayashi S (1999) Modelling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells. Jpn J Appl Phys 38:5991–5995

    Article  Google Scholar 

  • Tsuda H, Waki N, Furue H (2008) Response time of polymer-stabilized ferroelectric liquid crystals. Ferroelectrics 365:108–114

    Article  Google Scholar 

  • Ulrich S, Mao X, Goldbart PM, Zippelius A (2006) Elasticity of highly cross-linked random networks. Eur Phys Lett 76(4):677

    Article  Google Scholar 

  • Ulrich S, Zippelius A, Benetatos P (2010) Random network of cross-linked directed polymers. Phys Rev E 81:021802

    Article  Google Scholar 

  • Zheng W (2007) Electrooptical properties of diacrylate polymer based network stabilized ferroelectric liquid crystals. Mol Cryst Liq Cryst 475:173–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Pal Majumder Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pal Majumder, T., Lahiri, T., Mukherjee, P.K. (2015). Effect of Polymer Network in Polymer Dispersed Ferroelectric Liquid Crystals (PSFLC). In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_6

Download citation

Publish with us

Policies and ethics