Skip to main content

Liquid Crystalline Polymer and Its Composites: Chemistry and Recent Advances

  • Chapter
  • 1706 Accesses

Abstract

The high strength and stiffness of Liquid Crystalline polymers (LCPs) are due to their rigid rod-like molecules which forms a highly ordered structures that result in self-reinforcing characteristics. Thermotropic LCPs exhibit exceptional mechanical properties when oriented. Commercial LCP resins are often filled with glass or other types of fillers like silica, clay, carbon nanotubes, graphene, and halloysite nanotube type fillers to negate the anisotropy and to reduce the cost.

The structure and properties of LCPs as well as the development of self-reinforcing high strength fibres during processing is discussed in this chapter. The rheological behavior of LCP and its dependence on the thermal and flow histories is covered. The influence of nanofillers will be considered with due attention e.g. effects of particle size, particle/matrix interface adhesion and particle loading on flow during processing and the mechanical properties of such particulate–LCP composites. Through these approaches of developing high performance particulate LCP-based composites that are less anisotropic will be outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acierno D, Naddeo C (1994) Blends of PEEK and PET-PHB 60: a preliminary study on thermal and morphological aspects. Polymer 35(9):1994–1996

    Article  Google Scholar 

  • Barón M, Stepto RFT (2002) Definitions of basic terms relating to polymer liquid crystals, IUPAC commission on macromolecular nomenclature. IUPAC recommendations. Pure Appl Chem 74(3):493–509

    Article  Google Scholar 

  • Bates FS (1991) Polymer-polymer phase behavior. Science 251(4996):898–905

    Article  Google Scholar 

  • Beery D, Kenig S, Siegmann A (1991) Structure development during flow of polyblends containing liquid crystalline polymers. Polym Eng Sci 31(6):451–458

    Article  Google Scholar 

  • Blizard KG, Baird DG (1987) The morphology and rheology of polymer blends containing a liquid crystalline copolyester. Polym Eng Sci 27(9):653–662

    Article  Google Scholar 

  • Brannock GR, Paul DR (1990) Phase behavior of ternary polymer blends composed of three miscible binaries. Macromolecules 23(25):5240–5250

    Article  Google Scholar 

  • Brehmer M, de Jeu WH (2012) Liquid crystal elastomers: materials and applications. Springer, Heidelberg

    Google Scholar 

  • Bretas RE, Baird DG (1992) Miscibility and mechanical properties of poly (ether imide)/poly (ether ether ketone)/liquid crystalline polymer ternary blends. Polymer 33(24):5233–5244

    Article  Google Scholar 

  • Brown CS, Alder PT (1993). In: Folkes MJ, Hope PS (eds) Polymer blends and alloys. Blackie Academic & Professional, Glasgow, pp 193–227

    Google Scholar 

  • Bucknall CB (1977) Toughened plastics. Applied Science, London

    Book  Google Scholar 

  • Christiansen WH, Paul DR, Barlow JW (1987) The phase behavior of ternary blends containing polycarbonate, phenoxy, and polycaprolactone. J Appl Polym Sci 34(2):537–548

    Article  Google Scholar 

  • Chung TS (1986) The recent developments of thermotropic liquid crystalline polymers. Polym Eng Sci 26(13):901–919

    Article  Google Scholar 

  • Collings PJ (1990) Nature’s delicate phase of matter. Adam Hilger IOP, Bristol, p 196

    Google Scholar 

  • Datta A, Chen HH, Baird DG (1993) The effect of compatibilization on blends of polypropylene with a liquid-crystalline polymer. Polymer 34(4):759–766

    Article  Google Scholar 

  • Davidson P (1999) Selected topics in X-ray scattering by liquid-crystalline polymers. In: Mingos DMP (ed) Liquid crystals II. Springer, Berlin, pp 1–39

    Chapter  Google Scholar 

  • Dowell F (1988) New theories for smectic and nematic liquid-crystal polymers: backbone LCPs and their mixtures and side-chain LCPs. Mol Cryst Liq Cryst Inc Nonlinear Opt 157(1):203–227

    Article  Google Scholar 

  • Dutta D, Weiss RA, Kristal K (1993) Liquid crystalline polymer/fluoropolymer blends: preparation and properties of unidirectional “prepregs” and composite laminates. Polym Eng Sci 33(13):838–844

    Article  Google Scholar 

  • Garcıa M, Eguiazabal JI, Nazabal J (2003) Two scale reinforcement in hybrid composites based on poly (ether sulfone), glass fiber and liquid crystalline polymer. Compos Sci Technol 63(15):2163–2170

    Article  Google Scholar 

  • Han H, Bhowmik PK (1997) Wholly aromatic liquid-crystalline polyesters. Prog Polym Sci 22(7):1431–1502

    Article  Google Scholar 

  • Harris JE, Robeson LM (1988) Miscible blends of poly (aryl ether ketone)s and polyetherimides. J Appl Polym Sci 35(7):1877–1891

    Article  Google Scholar 

  • Isayev A, Swaminathan S (1989) US Patent 4,835,047. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Jaarsma FC, Chen JC, Conley DO (1985) A new chemically resistant liquid crystal polymer. Manag Corros Plast 7:71–76

    Google Scholar 

  • Karam HJ, Bellinger JC (1968) Deformation and breakup of liquid droplets in a simple shear field. Ind Eng Chem Fundam 7(4):576–581

    Article  Google Scholar 

  • Kelar K, Jurkowski B (2000) Preparation of functionalised low-density polyethylene by reactive extrusion and its blend with polyamide 6. Polymer 41(3):1055–1062

    Article  Google Scholar 

  • Kiss G (1987) In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci 27(6):410–423

    Article  Google Scholar 

  • Kohli A, Chung N, Weiss RA (1989) The effect of deformation history on the morphology and properties of blends of polycarbonate and a thermotropic liquid crystalline polymer. Polym Eng Sci 29(9):573–580

    Article  Google Scholar 

  • Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23(4):707–757

    Article  Google Scholar 

  • Kulichikhin VG, Plate NA (1991) Blend composites based on liquid crystal thermoplast. Rev Polym Sci USSR 33(1):1–37

    Article  Google Scholar 

  • Kumar ES, Das CK (2005) Mechanical, dynamic mechanical properties and thermal stability of fluorocarbon elastomer–liquid crystalline polymer blends. Polym Compos 26(3):306–315

    Article  Google Scholar 

  • Kurtz SM, Muratoglu OK, Evans M, Edidin AA (1999) Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20(18):1659–1688

    Article  Google Scholar 

  • La Mantia FP, Valenza A, Magagnini PL (1992) Liquid crystal polymer‐based blends: “Universal grade” polymers? J Appl Polym Sci 44(7):1257–1265

    Article  Google Scholar 

  • La Mantia FP, Paci M, Magagnini PL (1997) Isothermal elongational behavior of liquid-crystalline polymers and LCPs based blends. Rheol Acta 36(2):152–159

    Google Scholar 

  • Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC, Boca Raton

    Google Scholar 

  • Malik TM, Carreau PJ, Chapleau N (1989) Characterization of liquid crystalline polyester polycarbonate blends. Polym Eng Sci 29(9):600–608

    Article  Google Scholar 

  • Manson JAE, Seferis JC (1992) Process simulated laminate (PSL): a methodology to internal stress characterization in advanced composite materials. J Compos Mater 26(3):405–431

    Article  Google Scholar 

  • Meng YZ, Tjong SC, Hay AS (1998) Morphology, rheological and thermal properties of the melt blends of poly (phthalazinone ether ketone sulfone) with liquid crystalline copolyester. Polymer 39(10):1845–1850

    Article  Google Scholar 

  • Narh KA, Zhang Q, Li Z (2000a) The effect of mixing on the properties of liquid crystalline polymer/polyethylene (terephthalate) blend. J Appl Polym Sci 75:1783–1787

    Article  Google Scholar 

  • Narh KA, Zhang Q, Li Z (2000b) The effect of mixing shear rate on the properties of liquid crystalline polymer/polyethylene terephthalate blends. J Appl Polym Sci 75(14):1783–1787

    Article  Google Scholar 

  • National Materials Advisory Board (1990) Liquid crystalline polymers. National Academy Press, Washington, DC. http://plc.cwru.edu/tutorial/enhanced/files/lc/phase/phase.htm

    Google Scholar 

  • Plummer CJG (1993) Advanced thermoplastic composites: characterization and processing. Hanser, New York (Chap 8)

    Google Scholar 

  • Plummer CJG, Zülle B, Demarmels A, Kausch HH (1993) The structure of filled and unfilled thermotropic liquid crystalline polymer injection moldings. J Appl Polym Sci 48(5):751–766

    Article  Google Scholar 

  • Popa-Nita V, Gerlič I, Kralj S (2009) The influence of disorder on thermotropic nematic liquid crystals phase behavior. Int J Mol Sci 10(9):3971–4008

    Article  Google Scholar 

  • Qin Y, Brydon DL, Mather RR, Wardman RH (1993) Fibres from polypropylene and liquid crystal polymer (LCP) blends: 1. Effect of LCP concentration. Polymer 34(6):1196–1201

    Article  Google Scholar 

  • Rath T, Kumar S, Mahaling RN, Mukherjee M, Das CK, Pandey KN, Saxena AK (2006) Flexible composite of PEEK and liquid crystalline polymer in presence of polyphosphazene. J Appl Polym Sci 104:3758–3765

    Article  Google Scholar 

  • Roetting O, Hinrichsen G (1994) Blends of thermotropic liquid crystalline and thermoplastic polymers: a short review. Adv Polym Technol 13(1):57–64

    Article  Google Scholar 

  • Roth D, Thomas L (1989) Why LCP film. In: Abstracts of papers of the American Chemical Society, vol 198, p 3-CMEC. American Chemical Society, Washington, DC

    Google Scholar 

  • Rudko O (2002) Liquid crystalline polymers. Uniaxial-biaxial nematic phase transition

    Google Scholar 

  • Scott CE, Macosko CW (1995) Morphology development during the initial stages of polymer-polymer blending. Polymer 36(3):461–470

    Article  Google Scholar 

  • Seo YP, Seo Y (2004) Thermal properties of biaxially deformed in situ composites. Polym Eng Sci 44(8):1419–1428

    Article  Google Scholar 

  • Seppälä J, Heino M, Kapanen C (1992) Injection‐moulded blends of a thermotropic liquid crystalline polymer with polyethylene terephthalate, polypropylene, and polyphenylene sulfide. J Appl Polym Sci 44(6):1051–1060

    Article  Google Scholar 

  • Shah VS, Keitz JD, Paul DR, Barlow JW (1986) Miscible ternary blends containing polycarbonate, SAN, and aliphatic polyesters. J Appl Polym Sci 32(3):3863–3879

    Article  Google Scholar 

  • Shibaev VP, Kozlovsky MV, Beresnev LA, Blinov LM, Plate NA (1984) Thermotropic liquid crystalline polymers. Polym Bull 12(4):299–301

    Article  Google Scholar 

  • Siegmann A, Dagan A, Kenig S (1985) Polyblends containing a liquid crystalline polymer. Polymer 26(9):1325–1330

    Article  Google Scholar 

  • Sukhadia AM, Done D, Baird DG (1990) Characterization and processing of blends of polyethylene terephthalate with several liquid crystalline polymers. Polym Eng Sci 30(9):519–526

    Article  Google Scholar 

  • Thomas LD, Roth DD (1990) Films from liquid-crystals. Chemtech 20(9):546–550

    Google Scholar 

  • Tjong SC (2003) Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng: R: Rep 41(1):1–60

    Article  Google Scholar 

  • Tjong SC, Li RKY, Xie X (2000) Properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and polyamide 66 blends. Polym J 32(11):907–914

    Article  Google Scholar 

  • Utracki LA, Favis BD (1989) Handbook of polymer science and technology. In: Cheremisinoff NP (ed) Polymer alloys and blends. Marcel Dekker, Inc., New York, pp 121–201

    Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410(6828):541–548

    Article  Google Scholar 

  • Weiss RA, Huh W, Nicolais L (1987) Novel reinforced polymers based on blends of polystyrene and a thermotropic liquid crystalline polymer. Polym Eng Sci 27(9):684–691

    Article  Google Scholar 

  • Yoon HN, Charbonneau LF, Calundann GW (1992) Synthesis, processing sand properties of thermotropic liquid‐crystal polymers. Adv Mater 4(3):206–214

    Article  Google Scholar 

  • Zhou J, Yan F (2005) Improvement of the tribological behavior of ultra‐high‐molecular‐weight polyethylene by incorporation of poly (phenyl p‐hydroxyzoate). J Appl Polym Sci 96(6):2336–2343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chapal Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maitra, A., Das, T., Das, C.K. (2015). Liquid Crystalline Polymer and Its Composites: Chemistry and Recent Advances. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_5

Download citation

Publish with us

Policies and ethics