Skip to main content

Azobenzene-Containing Liquid Single Crystal Elastomers for Photoresponsive Artificial Muscles

  • Chapter
Liquid Crystalline Polymers

Abstract

Light is an endless, free and environmentally friendly energy source. Photoactive artificial muscle-like actuators are human-made materials capable to convert such luminous energy into motion or force. In fact, these materials try to mimic the abilities of biological muscles, which are responsible for locomotion in living organisms. Indeed, light-triggered artificial muscle-like actuators have experienced a current growing interest within materials science owing to their great potential applicability within actual technology. Specifically, liquid single crystal elastomers (LSCEs), which are macroscopically oriented polymer networks, have been proved to be invaluable materials for this purpose. LSCEs combine uniquely the molecular organization of liquid crystals with the elasticity of conventional rubbers. As a result, if light-sensitive molecules, such as azobenzenes, are somehow incorporated into the elastomeric network, the macroscopic dimensions of the whole material can be easily modified just by irradiating it with light of the appropriate wavelength, owing to the drastic geometrical change the azo chromophore suffers upon isomerisation. Two key parameters should be considered in the overall performance of artificial muscle-like actuators, namely, the maximum opto-mechanical response generated by the actuator and the time it requires to recover its initial dimensions. These two magnitudes are mainly controlled not only by the connectivity between the azo dye and the elastomeric network but also by the thermal isomerisation rate of the azo chromophore used. Hence, the main aim of the present chapter will be to afford the reader with a broad overview of the different strategies that have been developed during recent years to improve these two key parameters and, therefore, to achieve more efficient and fast-responding artificial muscle-like actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera C, Ringsdorf H (1984) Thermotropic polyesters with mesogenic groups based on substituted hydroquinone units and highly flexible siloxan spacer in the main chain. Polym Bull 12:93–98

    Article  Google Scholar 

  • Broer D, Crawford GP, Zumer S (2011) Cross-linked liquid crystalline systems: from rigid polymer networks to elastomers (liquid crystals book series). CRC Press, Boca Raton

    Book  Google Scholar 

  • Camacho López M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307–310

    Article  Google Scholar 

  • Cviklinski J, Tajbakhsh AR, Terentjev EM (2002) UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E 9:427–434

    Article  Google Scholar 

  • de Gennes PG (1969) Possibilites offertes par la reticulation de polymeres en presence d’un cristal liquide. Phys Lett 28A:725–726

    Article  Google Scholar 

  • de Jeu WH (2012) Liquid crystal elastomers: materials and applications, advances in polymer science series. Springer, Berlin

    Book  Google Scholar 

  • Donnio B, Wermter H, Finkelmann H (2000) A simple and versatile synthetic route for the preparation of main-chain liquid-crystalline elastomers. Macromolecules 33:7724–7729

    Article  Google Scholar 

  • Finkelmann H (1987) Liquid crystal polymers, Chap 1. In: Gray GW (ed) Thermotropic liquid crystals. Wiley, Chichester, pp 1–27

    Google Scholar 

  • Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501-1–015501-4

    Article  Google Scholar 

  • Fleischmann EK, Zentel R (2013) Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed 52:8810–8827

    Article  Google Scholar 

  • Garcia-Amorós J, Velasco D (2014) Understanding the fast thermal isomerisation of azophenols in glassy and liquid-crystalline polymers. Phys Chem Chem Phys 16:3108–3114

    Article  Google Scholar 

  • Garcia-Amorós J, Szymczyk A, Velasco D (2009) Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals. Phys Chem Chem Phys 11:4244–4250

    Article  Google Scholar 

  • Garcia-Amorós J, Sánchez-Ferrer A, Masaad WA, Nonell S, Velasco D (2010) Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys Chem Chem Phys 12:13238–13242

    Article  Google Scholar 

  • Garcia-Amorós J, Finkelmann H, Velasco D (2011a) Influence of the photo-active azo cross-linker spacer on the opto-mechanics of polysiloxane elastomer actuators. J Mater Chem 21:1094–1101

    Article  Google Scholar 

  • Garcia-Amorós J, Martínez M, Finkelmann H, Velasco D (2014) Photoactuation and thermal isomerisation mechanism of cyanoazobenzene-based liquid crystal elastomers. Phys Chem Chem Phys 16:8448–8454

    Article  Google Scholar 

  • Gray GW (1998) Handbook of liquid crystals. Wiley-VCH, Weinheim

    Google Scholar 

  • Harvey CLM, Terentjev EM (2007) Role of polarization and alignment in photoactuation of nematic elastomers. Eur Phys J E Soft Matter 23:185–189

    Article  Google Scholar 

  • Ikeda T, Ube T (2011) Photomobile polymer materials: from nano to macro. Mater Today 14:480–487

    Article  Google Scholar 

  • Koerner H, White TJ, Tabiryan NV, Bunning TJ, Vaia RA (2008) Photogenerating work from polymers. Mater Today 11:34–42

    Article  Google Scholar 

  • Küpfer J, Finkelmann H (1991) Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun 12:717–726

    Article  Google Scholar 

  • Lee KM, Wang DH, Koerner H, Vaia RA, Tan LS, White TJ (2012) Enhancement of photogenerated mechanical force in azobenzene-functionalized polyimides. Angew Chem Int Ed 51:4117–4121

    Article  Google Scholar 

  • Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y (2014) Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 13:36–41

    Article  Google Scholar 

  • Prasad SK, Nair GG, Sandhya KL, Rao DSS (2004) Photoinduced phase transitions in liquid-crystalline systems. Curr Sci 86:815–823

    Google Scholar 

  • Priimagi A, Shimamura A, Kondo M, Hiraoka T, Kubo S, Mamiya JI, Kinoshita M, Ikeda T, Shishido A (2012) Location of the azobenzene moieties within the cross-linked liquid-crystalline polymers can dictate the direction of photoinduced bending. ACS Macro Lett 1:96–99

    Article  Google Scholar 

  • Rau H (1990) Photochemistry and photophysics. CRC Press, Boca Raton

    Google Scholar 

  • Sanchez-Ferrer A (2011) Light-induced disorder in liquid-crystalline elastomers for actuation. Proc SPIE 8107:810702-1–810702-8

    Google Scholar 

  • Sánchez-Ferrer A, Finkelmann H (2013) Opto-mechanical effect in photoactive nematic main-chain liquid-crystalline elastomers. Soft Matter 9:4621–4627

    Article  Google Scholar 

  • Sánchez-Ferrer A, Merekalov A, Finkelmann H (2011) Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers. macromol. Rapid Commun 32:671–678

    Article  Google Scholar 

  • Shankar MR, Smith ML, Tondiglia VP, Lee KM, McConney ME, Wang DH, Tan LS, White TJ (2013) Contactless, photoinitiated snap-through in azobenzene-functionalized polymers. Proc Natl Acad Sci 110:18792–18797

    Article  Google Scholar 

  • van Oosten CL, Bastiaansen CWM, Broer DJ (2008) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8:677–682

    Article  Google Scholar 

  • Warner M, Terentjev EM (2007) Liquid crystal elastomers. Clarendon, Oxford

    Google Scholar 

  • Wermter H, Finkelmann H (2001) Liquid crystalline elastomers as artificial muscles. e-Polymers 13:1–13

    Google Scholar 

  • Yamada M, Kondo M, Mamiya JI, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  Google Scholar 

  • Yu Y, Ikeda T (2004) Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions. J Photochem Photobiol C Photochem Rev 5:247–265

    Article  Google Scholar 

  • Yu H, Ikeda T (2011) Photocontrollable liquid-crystalline actuators. Adv Mater 23:2149–2180

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministerio de Economía y Competitividad (Spain) through grant CTQ2012-36074 is acknowledged. J. Garcia-Amorós is also grateful for a Beatriu de Pinós post-doctoral grant from the Generalitat de Catalunya (Spain, grant 2011 BP-A2-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Amorós, J., Velasco, D. (2015). Azobenzene-Containing Liquid Single Crystal Elastomers for Photoresponsive Artificial Muscles. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_18

Download citation

Publish with us

Policies and ethics