Skip to main content

Liquid Crystalline Semiconducting Polymers for Organic Field-Effect Transistor Materials

  • Chapter

Abstract

Conjugated polymers have been intensively investigated because they are widely applied in organic electronics such as organic field-effect transistor (OFET). One of adopted design strategies for these conjugated polymers is to attach long, linear or branched aliphatic chains onto the rigid aromatic backbone, and hence to render sufficient solubility for the resultant conjugated polymers. As a result, the chemical structure of the semiconducting conjugated polymers is very similar to that of a liquid crystalline mesogen. The mesomorphic phases of liquid crystalline conjugated polymers are of particular interest for understanding the self-assembly behavior and more importantly elucidating the relationship between conjugated polymer liquid crystalline properties and the transistor device performance. A comprehensive overview of the mesogenic properties as well as the OFET device performance of liquid crystalline conjugated polymers is hence summarized here to provide more insights into the structure property relationships for this unique type of organic electronics materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098

    Article  Google Scholar 

  • Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X (2010) n-Type organic semiconductor in organic electronics. Adv Mater 22:3876–3892

    Article  Google Scholar 

  • Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24

    Article  Google Scholar 

  • Baklar M, Wöbkenberg PH, Sparrowe D, Goncalves M, McCulloch I, Heeney M, Anthopoulos T, Stingelin N (2010) Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. J Mater Chem 20:1927–1931

    Article  Google Scholar 

  • Blom PWM, de Jong MJM, van Munster MG (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:R656

    Article  Google Scholar 

  • Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Liquid crystals of disc-like molecules. Pramana 9:471–480

    Article  Google Scholar 

  • Chen Y, Liu C, Tian H, Bao C, Zhang X, Yan D, Geng Y, Wang F (2012) Novel conjugated polymers based on dithieno[3,2-b:6,7-b]carbazole for solution processed thin-film transistors. Macromol Rapid Commun 33:1759–1764

    Article  Google Scholar 

  • Chung DS, Lee SJ, Park JW, Choi DB, Lee DH, Park JW, Shin SC, Lim YH, Kwon SK, Park CE (2008) High performance amorphous polymeric thin-film transistors based on poly[(1,2-bis(2′-thienyl)vineyl-5′,5″-diyl)-alt-(9,9-dioctylfluorene-2,7-diyl)] semiconductors. Chem Mater 20:3450–3456

    Article  Google Scholar 

  • Dong S, Tian H, Song D, Yang Z, Yan D, Geng Y, Wang F (2009) The first liquid crystalline phthalocyanine derivative capable of edge-on alignment for solution processed organic thin-film transistors. Chem Commun 21:3086–3088

    Article  Google Scholar 

  • Fong HH, Pozdin VA, Amassian A, Malliaras GG, Smilgies DM, He M, Gasper S, Zhang F, Sorensen M (2008) Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. J Am Chem Soc 130:13202–13203

    Article  Google Scholar 

  • Fukuda M, Sawada K, Yoshino K (1993) Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. J Polym Sci Part A Polym Chem 31:2465–2471

    Article  Google Scholar 

  • Heeney M, Bailey C, Giles M, Shkunov M, Sparrowe D, Tierney S, Zhang W, McCulloch I (2004) Alkylidene fluorene liquid crystalline semiconducting polymers for organic field-effect transistor devices. Macromolecules 37:5250–5256

    Article  Google Scholar 

  • Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I (2005) Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. J Am Chem Soc 127:1078–1079

    Article  Google Scholar 

  • Kahng D, Atalla MM (1960) IRE solid-state devices research conference. Carnegie Institute of Technology, Pittsburgh

    Google Scholar 

  • Kaszynski P, Dougherty DA (1993) Synthesis and properties of diethyl 5,10-dihetera-5, 10-dihydroindeno[2,1-a]indene-2,7-dicarboxylates. J Org Chem 58:5209–5220

    Google Scholar 

  • Kim DH, Lee BL, Moon H, Kang HM, Jeong EJ, Park JI, Han KM, Lee S, Yoo BW, Koo BW, Kim JY, Lee WH, Cho K, Becerril HA, Bao Z (2009) Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J Am Chem Soc 131:6124–6132

    Article  Google Scholar 

  • Kim J, Lim B, Baeg KJ, Noh YY, Khim D, Jeong HG, Yun JM, Kim DY (2011) Highly soluble poly(thienylenevinylene) derivatives with charge carrier mobility exceeding 1 cm2V-1s-1. Chem Mater 23:4663–4665

    Article  Google Scholar 

  • Kim J, Baeg KJ, Khim D, James DT, Kim JS, Lim B, Yun JM, Jeong HG, Amegadze PSK, Noh YY, Kim DY (2013) Optimal ambipolar charge transport of thienylenevinylene-based polymer semiconductors by changes in conformation for high-performance organic thin film transistors and inverters. Chem Mater 25:1572–1583

    Article  Google Scholar 

  • Kinder L, Kanicki J, Petroff P (2004) Structural ordering and enhanced carrier mobility in organic polymer thin film transistors. Synth Met 146:181–185

    Article  Google Scholar 

  • Koezuka H, Tsumura T, Ando T (1987) Field-effect transistor with polythiophene thin film. Synth Met 18:699–704

    Article  Google Scholar 

  • Kong H, Jung YK, Cho NS, Kang IN, Park JH, Cho S, Shim HK (2009) New semiconducting polymers containing 3,6-dimethyl(thieno[3,2-b]-thiophene or selenopheneno[3,2-b]selenophene) for organic thin-film transistors. Chem Mater 21:2650–2660

    Article  Google Scholar 

  • Košata B, Kozmik V, Svoboda J (2003) Novel liquid crystals based on [1]benzothieno[3,2-b][1]benzothiophene. Liq Cryst 30:603–610

    Article  Google Scholar 

  • Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M (2007) Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed 46:4832–4887

    Article  Google Scholar 

  • Lee J, Chung JW, Jang J, Kim DH, Park JI, Lee E, Lee BL, Kim JY, Jung JY, Park JS, Koo B, Jin YW, Kim DH (2013) Influence of alkyl side chain on the crystallinity and trap density of states in thiophene and thiazole semiconducting copolymer based inkjet-printed field-effect transistors. Chem Mater 25:1927–1934

    Article  Google Scholar 

  • Li J, Qin F, Li CM, Bao Q, Chan-Park MB, Zhang W, Qin J, Ong BS (2008) High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles. Chem Mater 20:2057–2059

    Article  Google Scholar 

  • Lilienfeld JE (1930) Method and apparatus for controlling electric currents. US Patent 1745175 A.

    Google Scholar 

  • Lim E, Jung B, Lee J, Shim H, Lee J, Yang YS, Do L (2005) Thin-film morphologies and solution-processable field-effect transistor behavior of a fluorene-thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 38:4531–4535

    Article  Google Scholar 

  • Lu K, Liu Y (2010) Polythiophenes: important conjugated semiconducting polymers for organic field-effect transistors. Curr Org Chem 14:2017–2033

    Article  Google Scholar 

  • McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333

    Article  Google Scholar 

  • McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ, Cölle M, Duffy W, Fischer D, Gundlach D, Hamadani B, Hamilton R, Richter L, Salleo A, Shkunov M, Sparrowe D, Tierney S, Zhang W (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21:1091–1109

    Article  Google Scholar 

  • Minemawari H, Yamada T, Matsui H, Tsutsumi JY, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475:364–367

    Article  Google Scholar 

  • Mondal R, Becerril HA, Verploegen E, Kim D, Norton JE, Ko S, Miyaki N, Lee S, Toney MF, Brédas JL, McGehee MD, Bao Z (2010) Thiophene-rich fused-aromatic thienopyrazine acceptor for donor-acceptor low band-gap polymers for OTFT and polymer solar cell applications. J Mater Chem 20:5823–5834

    Article  Google Scholar 

  • Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096

    Article  Google Scholar 

  • Ong BS, Wu Y, Liu P, Gardner S (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378–3379

    Article  Google Scholar 

  • Osaka I, Sauvé G, Zhang R, Kowalewski T, McCullough RD (2007) Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater 19:4160–4165

    Article  Google Scholar 

  • Osaka I, Zhang R, Sauvé G, Smilgies DM, Kowalewski T, McCullough RD (2009) High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J Am Chem Soc 131:2521–2529

    Article  Google Scholar 

  • Osaka I, Zhang R, Liu J, Smilgies DM, Kowalewski T, McCullough RD (2010) Highly stable semiconducting polymers based on thiazolothiazole. Chem Mater 22:4191–4196

    Article  Google Scholar 

  • Redecker M, Bradley DDC, Inbasekaran M, Woo EP (1998) Nondispersive hole transport in an electroluminescent polyfluorene. Appl Phys Lett 73:1565–1567

    Article  Google Scholar 

  • Redecker M, Bradley DDC, Inbasekaran M, Woo EP (1999) Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl Phys Lett 74:1400–1402

    Article  Google Scholar 

  • Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  • Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  Google Scholar 

  • Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000a) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  • Sirringhaus H, Wilson RJ, Friend RH, Inbasekaran M, Wu W, Woo EP, Grell M, Bradley DDC (2000b) Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid crystalline phase. Appl Phys Lett 77:406–408

    Article  Google Scholar 

  • Takimiya K, Kunugi Y, Otsubo T (2007) Development of new semiconducting materials for durable high-performance air-stable organic field-effect transistors. Chem Lett 36:578–583

    Article  Google Scholar 

  • Takimiya K, Osaka I, Mori T, Nakano M (2014) Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc Chem Res 47(5):1493–1502. doi:10.1021/ar400282g

    Article  Google Scholar 

  • Umeda T, Kumaki D, Tokito S (2009) Surface-energy-dependent field-effect mobilities up to 1 cm2/Vs for polymer thin-film transistor. J Appl Phys 105:024516

    Article  Google Scholar 

  • Veres J, Ogier S, Lloyd G (2004) Gate insulators in organic field-effect transistors. Chem Mater 16:4543–4555

    Article  Google Scholar 

  • Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  Google Scholar 

  • Warman JM, de Haas MP, Dicker G, Grozema FC, Piris J, Debije MG (2004) Pulse-radiolysis time-resolved microwave conductivity: π-bond-conjugated polymers versus π-π-stacked discotics. Chem Mater 16:4600–4609

    Article  Google Scholar 

  • Würthner F (2001) Plastic transistors reach maturity for mass applications in microelectronics. Angew Chem Int Ed 40:1037–1039

    Article  Google Scholar 

  • Xie L, Yin CR, Lai WY, Fan QL, Huang W (2012) Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 37:1192–1264

    Article  Google Scholar 

  • Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–687

    Article  Google Scholar 

  • Zhao N, Botton GA, Zhu S, Duft A, Ong BS, Wu Y, Liu P (2004) Microscopic studies on liquid crystal poly(3,3′″-dialkylquaterthiophene) semiconductor. Macromolecules 37:8307–8312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Ye or Jianwei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ye, Q., Xu, J. (2015). Liquid Crystalline Semiconducting Polymers for Organic Field-Effect Transistor Materials. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_17

Download citation

Publish with us

Policies and ethics