Skip to main content

Functional Materials from Liquid Crystalline Cellulose Derivatives: Synthetic Routes, Characterization and Applications

  • Chapter
Liquid Crystalline Polymers

Abstract

Cellulose is a linear syndiotactic homopolymer composed of d-anhydroglucopyranose units which are linked by β-(1 → 4)-glycosidic bonds. The primary and secondary free hydroxyl groups, which decorate the polysaccharide chains, can undergo chemical substitution given rise to a high range of cellulose derivatives. It is well known that cellulose derivatives are at the origin of films and fibers, which characteristics can be diverse if prepared from liquid crystalline phases.

Cellulose derivatives can present thermotropic as well as lyotropic phases whose characteristics are strongly affected by the architecture of the polymer chains, which can be dictated by the size, number and type of the substituents attached to cellulose main chain. In this chapter we highlight the chemical versatility of cellulose to generate liquid crystalline cellulose derivatives, which can be at the origin of high-performance materials with different mechanical, optical, thermal and structural properties that have lately regained wider attention due to the recognition of their innovative properties associated with their biocompatibility. Special attention will be devoted to recent advances, including the use of cellulose liquid crystalline derivatives to produce a soft motor, light modulated wettability films, non-woven membranes consisting in micro- and nano-helices and matrices for electro-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value of the critical concentration, in terms of weight fraction, is given by the expression:

    $$ {C}^{*}\left(w/w\right)=\frac{\rho_2{C}^{*}\left(v/v\right)}{\rho_1+\left({\rho}_2-{\rho}_1\right){C}^{*}\left(v/v\right)}, $$

    where ρ1 is the density of the solvent and ρ2 the density of the polymer.

References

  • Almeida PL, Tavares S, Martins AF, Godinho MH, Cidade MT, Figueirinhas JL (2002) Cross-linked hydroxypropylcellulose films: mechanical behaviour and electro-optical properties of PDLC type cells. Opt Mater 20(2):97–100

    Article  Google Scholar 

  • Almeida PL, Kundu S, Beja D, Fonseca J, Figueirinhas JL, Godinho MH (2009a) Deformation of isotropic and anisotropic liquid droplets dispersed in a cellulose liquid crystalline derivative. Cellulose 16(3):427–434

    Article  Google Scholar 

  • Almeida PL, Kundu S, Borges JP, Godinho MH, Figueirinhas JL (2009b) Electro-optical light scattering shutter using electrospun cellulose-based nano- and microfibers. Appl Phys Lett 95:043501

    Article  Google Scholar 

  • Arici E, Greiner A, Hou H, Reuning A, Wendorff JH (2000) Optical properties of guest host systems based on cellulose derivatives. Macromol Chem Phys 201(15):2083–2090

    Article  Google Scholar 

  • Aspler JS, Gray DG (1982) Interaction of organic vapours with hydroxypropyl cellulose. Polymer 23(1):43–46

    Article  Google Scholar 

  • Atalla RH, Isogai A (2005) Recent developments in spectroscopic and chemical characterization of cellulose. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 123–158

    Google Scholar 

  • Bagheri M, Shateri S (2012) Synthesis and characterization of novel liquid crystalline cholesteryl-modified hydroxypropyl cellulose derivatives. J Polym Res 19(3):1–13

    Article  Google Scholar 

  • Bhadani SN, Gray DG (1982) Liquid crystal formation from the benzoic acid ester of hydroxypropylcellulose. Makromol Chem Rapid Commun 3(6):449–455

    Article  Google Scholar 

  • Bhadani SN, Gray DG (1983) Cellulose-based liquid crystalline polymers; esters of (hydroxypropyl) cellulose. Mol Cryst Liq Cryst 99(1):29–38

    Article  Google Scholar 

  • Bhadani SN, Gray DG (1984) Crosslinked cholesteric network from the acrylic acid ester of (hydroxypropyl)cellulose. Mol Cryst Liq Cryst 102(8–9):255–260

    Article  Google Scholar 

  • Bhadani SN, Tseng S-L, Gray DG (1983) Lyotropic and thermotropic liquid-crystalline phase formation from fractions of a semiflexible cellulosic polymer. Makromol Chem 184(8):1727–1740

    Article  Google Scholar 

  • Bheda J, Fellers J, White J (1980) Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid Polym Sci 258:1335–1342

    Article  Google Scholar 

  • Butt H-J, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley, Weinheim

    Book  Google Scholar 

  • Canejo J, Godinho M (2013) Cellulose perversions. Materials 6:1377–1390

    Article  Google Scholar 

  • Canejo JP, Borges JP, Godinho MH, Brogueira P, Teixeira PIC, Terentjev EM (2008) Helical twisting of electrospun liquid crystalline cellulose micro- and nanofibers. Adv Mater 20:4821–4825

    Article  Google Scholar 

  • Chanzy H, Peguy A, Chaunis S, Monzie P (1980) Oriented cellulose films and fibers from a mesophase system. J Polym Sci Polym Phys Ed 18(5):1137–1144

    Article  Google Scholar 

  • Charlet G, Gray DG (1987) Solid cholesteric films cast from aqueous (hydroxypropyl)cellulose. Macromolecules 20(1):33–38

    Article  Google Scholar 

  • Cidade MT, Leal CR, Godinho MH, Martins AF, Navard P (1995) Rheological properties of acetoxypropylcellulose in the thermotropic chiral nematic phase. Mol Cryst Liq Cryst 261(1):617–625

    Article  Google Scholar 

  • Costa I, Almeida PL, Filip D, Figueirinhas JL, Godinho MH (2006) Tunable topographical cellulose matrices for electro-optical liquid crystal cells. Opto-Electron Rev 14(4):299–303

    Article  Google Scholar 

  • Costa I, Filip D, Figueirinhas JL, Godinho MH (2007) New cellulose derivatives composites for electro-optical sensors. Carbohydr Polym 68(1):159–165

    Article  Google Scholar 

  • Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2(30):4767–4788

    Article  Google Scholar 

  • de Gennes PG, Frost J (1993) The physics of liquid crystals, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • De Vries H (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr 4(3):219–226

    Article  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688

    Article  Google Scholar 

  • El-Wakil NA, Fahmy Y, Abou-Zeid RE, Dufresne A, El-Sherbiny S (2010) Liquid crystalline behavior of hydroxypropylcellulose esterified with 4-alkoxybenzoic acid. Bioresources 5(3):1834–1845

    Google Scholar 

  • Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7:1831–1835

    Article  Google Scholar 

  • Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc A Math Phys Eng Sci 234:60–73

    Article  Google Scholar 

  • Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482

    Article  Google Scholar 

  • Geng Y, Almeida PL, Fernandes SN, Cheng C, Palffy-Muhoray P, Godinho MH (2013) A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep 3:1028

    Google Scholar 

  • Godinho MH, Martins AF, Figueirinhas JL (1996) Novel PDLC type display based on cellulose derivatives. Liq Cryst 20:373–376

    Article  Google Scholar 

  • Godinho MH, Martins AF, Figueirinhas JL (1998) Composite systems for display applications from cellulose elastomers and nematic liquid crystals. Opt Mater 9:226–229

    Article  Google Scholar 

  • Godinho MH, Canejo JP, Pinto LFV, Borges JP, Teixeira PIC (2009a) How to mimic the shapes of plant tendrils on the nano and microscale: spirals and helices of electrospun liquid crystalline cellulose derivatives. Soft Matter 5:2772

    Article  Google Scholar 

  • Godinho MH, Filip D, Costa I, Carvalho AL, Figueirinhas JL, Terentjev EM (2009b) Liquid crystalline cellulose derivative elastomer films under uniaxial strain. Cellulose 16(2):199–205

    Article  Google Scholar 

  • Godinho MH, Canejo JP, Feio G, Terentjev EM (2010) Self-winding of helices in plant tendrils and cellulose liquid crystal fibers. Soft Matter 6:5965

    Article  Google Scholar 

  • Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75(1):85–89

    Article  Google Scholar 

  • Gray DG (1983) Liquid crystalline cellulose derivatives. J Appl Polym Sci Appl Polym Symp 37:179–192

    Google Scholar 

  • Gray DG (1994) Chiral nematic ordering of polysaccharides. Carbohydr Polym 25(4):277–284

    Article  Google Scholar 

  • Greiner A, Hou H, Reuning A, Thomas A, Wendorff JH, Zimmermann S (2003) Synthesis and opto-electronic properties of cholesteric cellulose esters. Cellulose 10(1):37–52

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  Google Scholar 

  • Heinze T (2005) Chemical functionalization of cellulose. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 551–554

    Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26(9):1689–1762

    Article  Google Scholar 

  • Ho FF-L, Kohler RR, Ward GA (1972) Determination of molar substitution and degree of substitution of hydroxypropyl cellulose by nuclear magnetic resonance spectrometry. Anal Chem 44:178–181

    Article  Google Scholar 

  • Hou H, Reuning A, Wendorff JH, Greiner A (2000) Tuning of the pitch height of thermotropic cellulose esters. Macromol Chem Phys 201(15):2050–2054

    Article  Google Scholar 

  • Huang B, Ge JJ, Li Y, Hou H (2007) Aliphatic acid esters of (2-hydroxypropyl) cellulose—effect of side chain length on properties of cholesteric liquid crystals. Polymer 48(1):264–269

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998a) General considerations on structure and reactivity of cellulose. In: Comprehensive cellulose chemistry, vol 1. Wiley, Weinheim, pp 9–154

    Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998b) General considerations on structure and reactivity of cellulose. In: Fundamentals and analytical methods: comprehensive cellulose chemistry, vol 1. Wiley, Weinheim, pp 9–155

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44(22):3358–3393

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50(24):5438–5466

    Article  Google Scholar 

  • Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 69–98

    Google Scholar 

  • Kosho H, Hiramatsu S, Nishi T, Tanaka Y, Kawauchi S, Watanabe J (1999) Thermotropic cholesteric liquid crystals in ester derivatives of hydroxypropylcellulose. High Perform Polym 11(1):41–48

    Article  Google Scholar 

  • Kuhn W (1936) Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe. Kolloid-Zeitschrift 76(3):258–271

    Article  Google Scholar 

  • Kundu S, Feio G, Pinto LFV, Almeida PL, Figueirinhas JL, Godinho MH (2010) Deuterium NMR study of orientational order in cellulosic network microfibers. Macromolecules 43(13):5749–5755

    Article  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80

    Article  Google Scholar 

  • Laivins GV, Gray DG (1985a) Characterization and chain stiffness of (acetoxypropyl)cellulose. Macromolecules 18(9):1746–1752

    Article  Google Scholar 

  • Laivins GV, Gray DG (1985b) Liquid crystalline phase transition of a semiflexible polymer: acetoxypropyl cellulose. Macromolecules 18(9):1753–1759

    Article  Google Scholar 

  • Laivins GV, Gray DG (1985c) Optical properties of (acetoxypropyl)cellulose mesophases: factors influencing the cholesteric pitch. Polymer 26(10):1435–1442

    Article  Google Scholar 

  • Laivins GV, Sixou P, Gray DG (1986) The liquid-crystalline properties of (acetoxypropyl)cellulose: effect of chain length and degree of acetylation. J Polym Sci B 24(12):2779–2792

    Article  Google Scholar 

  • Lee JL, Pearce EM, Kwei TK (1997) Morphological development in alkyl-substituted semiflexible polymers. Macromolecules 30(26):8233–8244

    Article  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  Google Scholar 

  • Lin-Liu YR, Shih YM, Woo C-W, Tan HT (1976) Molecular model for cholesteric liquid crystals. Phys Rev A 14(1):445–450

    Article  Google Scholar 

  • Maji S, Kundu S, Pinto LFV, Godinho MH, Khan AH, Acharya S (2013) Improved mechanical stability of acetoxypropyl cellulose upon blending with ultranarrow PbS nanowires in Langmuir monolayer matrix. Langmuir 29(49):15231–15239

    Article  Google Scholar 

  • Mays JW (1988) Solution properties and chain stiffness of cyanoethyl hydroxypropyl cellulose. Macromolecules 21(11):3179–3183

    Article  Google Scholar 

  • Müller M, Zentel R (2000) Cholesteric phases and films from cellulose derivatives. Macromol Chem Phys 201(15):2055–2063

    Article  Google Scholar 

  • Nakayama E, Azuma J (1998) Substituent distribution of cyanoethyl cellulose. Cellulose 5:175–185

    Article  Google Scholar 

  • Navard P, Haudin J-M (1980) Rheology of mesomorphic solutions of cellulose. Br Polym J 12(4):174–178

    Article  Google Scholar 

  • Patel DL, Gilbert RD (1981) Lyotropic mesomorphic formation of cellulose in trifluoroacetic acid-chlorinated-alkane solvent mixtures at room temperature. J Polym Sci Polym Phys Ed 19(8):1231–1236

    Article  Google Scholar 

  • Pawlowski WP, Gilbert RD, Fornes RE, Purrington ST (1986) Acetoacetylation of O-(hydroxypropyl)cellulose by 2,2,6-trimethyl-4H-1,3-dioxin-4-one. Carbohydr Res 156:232–235

    Article  Google Scholar 

  • Pawlowski WP, Gilbert RD, Fornes RE, Purrington ST (1987) The thermotropic and lyotropic liquid-crystalline properties of acetoacetoxypropyl cellulose. J Polym Sci B 25(11):2293–2301

    Article  Google Scholar 

  • Pérez S, Mazeau K (2005) Conformations, structures, and morphologies of celluloses. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 41–68

    Google Scholar 

  • Pinto LFV, Kundu S, Brogueira P, Cruz C, Fernandes SN, Aluculesei A, Godinho MH (2011) Cellulose-based liquid crystalline photoresponsive films with tunable surface wettability. Langmuir 27(10):6330–6337

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  Google Scholar 

  • Riti JB, Cidade MT, Godinho MH, Martins AF, Navard P (1997) Shear induced textures of thermotropic acetoxypropylcellulose. J Rheol 41(6):1247–1260

    Article  Google Scholar 

  • Rodriguez-Parada JM, Duran R, Wegner G (1989) A comparative study of mesophase formation in rigid-chain polyesters with flexible side chains. Macromolecules 22(5):2507–2516

    Article  Google Scholar 

  • Rusig I, Dedier J, Filliatre C, Godhino MH, Varichon L, Sixou P (1992) Effect of degradation on thermotropic cholesteric optical properties of (2-hydroxypropyl) cellulose (HPC) esters. J Polym Sci A Polym Chem 30(5):895–899

    Article  Google Scholar 

  • Rusig I, Godinho MH, Varichon L, Sixou P, Dedier J, Filliatre C, Martins AF (1994) Optical properties of cholesteric (2-hydroxypropyl) cellulose (HPC) esters. J Polym Sci B 32(11):1907–1914

    Article  Google Scholar 

  • Samuels RJ (1969) Solid-state characterization of the structure and deformation behavior of water-soluble hydroxypropylcellulose. J Polym Sci A 7(7):1197–1258

    Article  Google Scholar 

  • Sena C, Godinho MH, Oliveira CLP, Figueiredo Neto AM (2011) Liquid crystalline cellulosic elastomers: free standing anisotropic films under stretching. Cellulose 18(5):1151–1163

    Article  Google Scholar 

  • Shimamura K, White JL, Fellers JF (1981) Hydroxypropylcellulose, a thermotropic liquid crystal: characteristics and structure development in continuous extrusion and melt spinning. J Appl Polym Sci 26(7):2165–2180

    Article  Google Scholar 

  • Shukla S, Brinley E, Cho H, Seal S (2005) Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers. Polymer 46:12130–12145

    Article  Google Scholar 

  • Singh S, Dunmur DA (2002) Liquid crystals: fundamentals. Liquid crystals: physical properties and nonlinear, Ed. World Scientific Publishing Co. ISBN 9810242506

    Google Scholar 

  • Soldi V (2005) Stability and degradation of polysaccharides. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 395–410

    Google Scholar 

  • Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198

    Article  Google Scholar 

  • Suto S, White JL, Fellers JF (1982) A comparative study of the thermotropic mesomorphic tendencies and rheological characteristics of three cellulose derivates: ethylene and propylene oxide ethers and an acetate butyrate ester. Rheol Acta 21(1):62–71

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–544

    Article  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98(1):820–828

    Article  Google Scholar 

  • Thakur VK, Thakur MK, Singha AS (2013b) Free radical–induced graft copolymerization onto natural fibers. Int J Polym Anal Char 18(6):430–438

    Article  Google Scholar 

  • Tseng S-L, Valente A, Gray DG (1981) Cholesteric liquid crystalline phases based on (acetoxypropyl)cellulose. Macromolecules 14(3):715–719

    Article  Google Scholar 

  • Tseng SL, Laivins GV, Gray DG (1982) The propanoate ester of (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures. Macromolecules 15(5):1262–1264

    Article  Google Scholar 

  • Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 43–60

    Chapter  Google Scholar 

  • Watanabe J, Nagase T (1988) Thermotropic polypeptides. 5. Temperature dependence of cholesteric pitches exhibiting a cholesteric sense inversion. Macromolecules 21(1):171–175

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  • Werbowyj RS, Gray DG (1976) Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst 34(4):97–103

    Article  Google Scholar 

  • Werbowyj RS, Gray DG (1984) Optical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentration. Macromolecules 17(8):1512–1520

    Article  Google Scholar 

  • Wojciechowski P (2000) Thermotropic mesomorphism of selected (2-hydroxypropyl)cellulose derivatives. J Appl Polym Sci 76(6):837–844

    Article  Google Scholar 

  • Wu X, Wang L, Yu H, Huang Y (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97:1292–1297

    Article  Google Scholar 

  • Wüstenberg T (2014) Hydroxypropylcellulose. In: Wüstenberg T (ed) Cellulose and cellulose derivatives in the food industry. Wiley, Weinheim, pp 319–342

    Google Scholar 

  • Yamagishi T, Fukuda T, Miyamoto T, Watanabe J (1988) Thermotropic cellulose derivatives with flexible substituents. Polym Bull 20(4):373–377

    Article  Google Scholar 

  • Yamagishi T, Fukuda T, Miyamoto T, Takashina Y, Yakoh Y, Watanabe J (1991) Thermotropic cellulose derivatives with flexible substituents IV. Columnar liquid crystals from ester-type derivatives of cellulose. Liq Cryst 10(4):467–473

    Article  Google Scholar 

  • Yamagishi T-A, Nakamoto Y, Sixou P (2006) Preparation and cholesteric mesophase properties of (Butyl-co-pentyl) propylcellulose. Cellulose 13(3):205–211

    Article  Google Scholar 

  • Yim CT, Gilson DFR, Kondo T, Gray DG (1992) Order parameters and side-chain conformation in ethyl cellulose/chloroform liquid crystal phases. Macromolecules 25:3377–3380

    Article  Google Scholar 

  • Zhao S, Wu X, Wang L, Huang Y (2003) Electrostatically generated fibers of ethyl-cyanoethyl cellulose. Cellulose 10:405–409

    Article  Google Scholar 

  • Zhao S, Wu X, Wang L, Huang Y (2004) Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. J Appl Polym Sci 91:242–246

    Article  Google Scholar 

  • Zugenmaier P (1998) Cellulosic liquid crystals. Handbook of liquid crystals. Wiley, Weinheim

    Google Scholar 

  • Zugenmaier P (2014) Cellulosic liquid crystals. In: Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson H, Raynes P (eds) Handbook of liquid crystals, vol 7:I:3. Wiley, Weinheim, pp 1–39

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Portuguese Science and Technology Foundation (FCT) supported, through contracts PTDC/CTM-POL/1484/2012, PEst-C/CTM/LA0025/2013-14 and Project 441.00 INDIA, also FEDER, COMPETE through contract QREN n. 34169. S. N. Fernandes and C. Echeverria acknowledge FCT for grant SFRH/BPD/78430/2011 and SFRH/BPD/88779/2012, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Godinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandes, S.N., Canejo, J.P., Echeverria, C., Godinho, M.H. (2015). Functional Materials from Liquid Crystalline Cellulose Derivatives: Synthetic Routes, Characterization and Applications. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_14

Download citation

Publish with us

Policies and ethics