Skip to main content

Liquid Crystals Order in Polymeric Microchannels

  • Chapter
Liquid Crystalline Polymers

Abstract

Liquid Crystals (LCs), combining optical nonlinearity and self-organizing properties with fluidity and being responsive to a wide variety of stimuli, have reached a key point in their development for photonic applications, for the realization of devices that can be dynamically reconfigurable, widely tunable and ultra-fast controlled. In this chapter, we overview recent advances in obtaining alignment of LCs to be used for photonics applications; in particular, we report on our recent efforts on developing a new generation of LC devices based on isotropic polymeric materials. We have realized an empty polymeric template by etching a periodic liquid crystalline composite material, called POLICRYPS (acronym of POlymer LIquid CRYstal Polymer Slices), which is a nano/micro-composite holographic grating made of slices of almost pure polymer alternated to films of well aligned Nematic Liquid Crystal (NLC). The distinctive features of the realized periodic microstructure enabled aligning several kinds of self-organizing materials, without the need of any kind of surface chemistry or functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armitage D (1980) Liquid crystal voltage controlled retardation display. Appl Opt 19:2235–2239

    Article  Google Scholar 

  • Beeckman J, Neyts K, Vanbrabant JM (2011) Liquid-crystal photonic applications. Opt Eng 50:081202–081209

    Article  Google Scholar 

  • Caputo R, Sukhov AV, Tabiryan N, Umeton C (1999) Efficiency dynamics of diffraction gratings recorded in liquid crystalline composite materials by a UV interference pattern. Chem Phys 245:463–471

    Article  Google Scholar 

  • Caputo R, Sukhov AV, Umeton C, Ushakov RF (2000) Formation of a Grating of Submicron Nematic Layers by Photopolymerization of Nematic-Containing Mixtures. J Exp Theor Phys 91:1190–1197

    Article  Google Scholar 

  • Caputo R, De Sio L, Sukhov AV, Veltri A, Umeton C (2004) Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt Lett 29:1261–1263

    Article  Google Scholar 

  • Caputo R, Umeton C, Veltri A, Sukhov AV, Tabiryan N (2005–2007) Holographic diffraction grating, process for its preparation and opto-electronic devices incorporating it. European Patent Request 1,649,318; US Patent Request 2007/0019152A1

    Google Scholar 

  • Caputo R, De Sio L, Veltri A, Umeton C, Sukhov AV (2006) POLICRYPS switchable holographic grating: a promising grating electro-optical pixel for high resolution display application. J Display Technol 2(1):38–51

    Article  Google Scholar 

  • Caputo R, De Luca A, De Sio L, Pezzi L, Strangi G, Umeton C, Veltri A, Asquini R, D’Alessandro A, Donisi D, Beccherelli R, Sukhov AV, Tabiryan N (2009) POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. J Opt A: Pure Appl Opt 11:024017 (13 pp)

    Article  Google Scholar 

  • Chigrinov V, Kozenkov VM, Kwok HS (2003) Optical applications of liquid crystals. In: Vicari L (ed) Inst. Physics, Bristol, p 201

    Google Scholar 

  • Chigrinov V, Kozenkov V, Kwok HS (2008) Photoalignment of liquid crystalline materials: physics and applications. Wiley, Chichester

    Book  Google Scholar 

  • Clark NA, Lagerwall ST (1980) Submicrosecond bistable electro‐optic switching in liquid crystals. Appl Phys Lett 36:899–902

    Article  Google Scholar 

  • d’Alessandro A, Donisi D, De Sio L, Beccherelli R, Asquini R, Caputo R, Umeton C (2008) Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating. Opt Express 16(13):9254–9260

    Article  Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford Science, Oxford

    Google Scholar 

  • De Sio L, Caputo R, De Luca A, Veltri A, Umeton C, Sukhov AV (2006) In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure. Appl Opt 45:3721–3727

    Article  Google Scholar 

  • De Sio L, Tabiryan N, Caputo R, Veltri A, Umeton C (2008) POLICRYPS structures as switchable optical phase modulators. Opt Express 16(11):7619–7624

    Article  Google Scholar 

  • De Sio L, Ferjani S, Strangi G, Umeton C, Bartolino R (2011) Universal soft matter template for photonic applications. Soft Matter 7(8):3739–3743

    Article  Google Scholar 

  • De Sio L, Romito M, Giocondo M, Vasdekis AE, De Luca A, Umeton C (2012) Electro-switchable polydimethylsiloxane based optofluidics. Lab Chip 12(19):3760–3765

    Article  Google Scholar 

  • Goodman LA, Mcginn JT, Anderson CH, Digeronimo F (1977) Topography of obliquely evaporated silicon oxide films and its effect on liquid-crystal orientation. IEEE Trans Electron Devices Ed-24(7):795–804

    Article  Google Scholar 

  • Ito N, Sakamoto K, Arafune R, Ushioda S (2000) Relation between the molecular orientations of a very thin liquid crystal layer and an underlying rubbed polyimide film. J Appl Phys 88:3235–3238

    Article  Google Scholar 

  • Jerome B (1991) Surface effects and anchoring in liquid crystals. Rep Prog Phys 54:391–452

    Article  Google Scholar 

  • Kelly SM, O’Neill M (2001) Liquid crystals for electro-optic applications. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices, vol 7, Liquid crystals, display and laser materials. Academic, New York, pp 2–66

    Google Scholar 

  • Kirsch P, Bremer M (2000) Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem Int Ed 39(23):4216–4235

    Article  Google Scholar 

  • Konovalov V, Chigrinov V, Kwok HS, Takada H, Takatsu H (2004) Photoaligned vertical aligned nematic mode in liquid crystals. Jpn J Appl Phys 43:261–266

    Article  Google Scholar 

  • Kossyrev PA, Yin A, Cloutier SG, Cardimona DA, Huang D, Alsing PM, Xu JM (2005) Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett 5:1978–1982

    Article  Google Scholar 

  • Monkade M, Boix M, Durand G (1988) Order electricity and oblique nematic orientation on rough solid surfaces. Europhys Lett 5(8):697–702

    Article  Google Scholar 

  • O’Neill M, Kelly SM (2000) Photoinduced surface alignment for liquid crystal displays. J Phys D Appl Phys 33(10):R67

    Article  Google Scholar 

  • Osterman J, Adås C, Madsen L, Skarp K (2005) Properties of azo-dye alignment layer on plastic substrates. In: SID symposium digest of technical papers, vol 36, pp 772–775

    Google Scholar 

  • Pratibha R, Park K, Smalyukh II, Park W (2009) Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt Express 17:19459–19469

    Article  Google Scholar 

  • Shiyanovskii SV, Lavrentovich OD, Schneider T, Ishikawa T, Smalyukh II, Woolverton CJ, Niehaus GD, Doane KJ (2005) Lyotropic chromonic liquid crystals for biological sensing applications. Mol Cryst Liq Cryst 434:259–270

    Article  Google Scholar 

  • Slikkerveer P, Bouten P, Cirkel P, de Goede J, Jagt H, Kooyman N, Nisato G, van Rijswijk R, Duineveld P (2004) A fully flexible colour display. In: SID symposium digest of technical papers, vol 35, pp 770–773

    Google Scholar 

  • Stohr J, Samant MG, Cossy-Favre A, Dìaz J, Momoi Y, Odahara S, Nagata T (1998) Microscopic origin of liquid crystal alignment on rubbed polymer surfaces. Macromolecules 31:1942–1946

    Article  Google Scholar 

  • Tanggaard Larsen T, Bjarklev A, Sparre Hermann D, Broeng J (2003) Optical devices based on liquid crystal photonic bandgap fibres. Opt Express 11(20):2589–2596

    Article  Google Scholar 

  • Varghese S, Narayanankutty S, Bastiaansen CWM, Crawford GP, Broer DJ (2004) Patterned alignment of liquid crystals by μ-rubbing. Adv Mater 16:1600–1605

    Article  Google Scholar 

  • Wardosanidze ZV (2011) Holography based on the Weigert’s effect. In: Naydenova I (ed) Holograms—recording materials and applications. ISBN: 978-953-307-981-3

    Google Scholar 

  • Zheng W (2010) Surface wetting characteristics of rubbed polyimide thin films. In: Hashim AA (ed) Polymer thin films. ISBN: 978-953-307-059-9, InTech. doi:10.5772/8403

Download references

Acknowledgment

The research was partially supported by the Air Force Office of Scientific Research (AFOSR), Air Force Research Laboratory (AFRL), U.S. Air Force, under grant FA8655-12-1-003 (P.I. L. De Sio, EOARD 2014/2015) and the Materials and Manufacturing Directorate, AFRL. The authors would also like to acknowledge the contribution of the COST Action IC1208. www.ic1208.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano De Sio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palermo, G., De Sio, L., Caputo, R., Umeton, C., Bartolino, R. (2015). Liquid Crystals Order in Polymeric Microchannels. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-20270-9_1

Download citation

Publish with us

Policies and ethics