Skip to main content

MENTOR: A Physiologically Controlled Tutoring System

  • Conference paper
  • First Online:
User Modeling, Adaptation and Personalization (UMAP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9146))

Abstract

In this paper we present a tutoring system that automatically sequences the learning content according to the learners’ mental states. The system draws on techniques from Brain Computer Interface and educational psychology to automatically adapt to changes in the learners’ mental states such as attention and workload using electroencephalogram (EEG) signals. The objective of this system is to maintain the learner in a positive mental state throughout the tutoring session by selecting the next pedagogical activity that fits the best to his current state. An experimental evaluation of our approach involving two groups of learners showed that the group who interacted with the mental state-based adaptive version of the system obtained higher learning outcomes and had a better learning experience than the group who interacted with a non-adaptive version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pour, P.A., Hussain, M., AlZoubi, O., D’Mello, S., Calvo, R.A.: The impact of system feedback on learners’ affective and physiological states. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 264–273. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Banda, N., Robinson, P.: Multimodal affect recognition in intelligent tutoring systems. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part II. LNCS, vol. 6975, pp. 200–207. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Jraidi, I., Chaouachi, M., Frasson, C.: A hierarchical probabilistic framework for recognizing learners’ interaction experience trends and emotions. Advances in Human-Computer Interaction (2013)

    Google Scholar 

  4. D’Mello, S.K., Craig, S.D., Gholson, B., Franklin, S., Picard, R.W., Graesser, A.C.: Integrating affect sensors in an intelligent tutoring system. In: Proc of Affective Interactions: The Computer in the Affective Loop Workshop at International Conference on IUI, pp. 7-13 (2005)

    Google Scholar 

  5. Jraidi, I., Chaouachi, M., Frasson, C.: A dynamic multimodal approach for assessing learners’ interaction experience. In: Proc of ACM International Conference on Multimodal Interaction (2013)

    Google Scholar 

  6. Paas, F.G.: Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology 84(4), 429 (1992)

    Article  Google Scholar 

  7. Kalyuga, S., Chandler, P., Tuovinen, J., Sweller, J.: When problem solving is superior to studying worked examples. Journal of educational psychology 93(3), 579 (2001)

    Article  Google Scholar 

  8. Berka, C., Levendowski, D.J., Ramsey, C.K., Davis, G., Lumicao, M.N., Stanney, K., Reeves, L., Regli, S.H., Tremoulet, P.D., Stibler, K.: Evaluation of an EEG workload model in an aegis simulation environment. In: Defense and Security Int. Soc. Optics and Photonics, pp.90-99 (2005)

    Google Scholar 

  9. Stevens, R., Galloway, T., Berka, C.: Integrating EEG models of cognitive load with machine learning models of scientific problem solving. In: Augmented Cognition: Past, Present and Future. Strategic Analysis, Inc., Arlington, pp. 55-65 (2006)

    Google Scholar 

  10. Sterman, M.B., Mann, C.A.: Concepts and applications of EEG analysis in aviation performance evaluation. Biological Psychology 40(1–2), 115–130 (1995)

    Article  Google Scholar 

  11. Stevens, R.H., Galloway, T., Berka, C.: EEG-related changes in cognitive workload, engagement and distraction as students acquire problem solving skills. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 187–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, M.N., Zivkovic, V.T., Popovic, M.V., Olmstead, R.: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)

    Article  Google Scholar 

  13. Van Orden, K.F., Limbert, W., Makeig, S., Jung, T.-P.: Eye activity correlates of workload during a visuospatial memory task. Human Factors: The Journal of the Human Factors and Ergonomics Society 43(1), 111–121 (2001)

    Article  Google Scholar 

  14. Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple sychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002)

    Article  Google Scholar 

  15. Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science 4(1–2), 113–131 (2003)

    Article  Google Scholar 

  16. https://sites.google.com/site/its2014wseeg/

  17. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biological psychology 40(1), 187–195 (1995)

    Article  Google Scholar 

  18. Lubar, J.F.: Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-regulation 16(3), 201–225 (1991)

    Article  Google Scholar 

  19. Chaouachi, M., Jraidi, I., Frasson, C.: Modeling mental workload using EEG features for intelligent systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 50–61. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Hart, S.G., Staveland, L.E.: Development Of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Human Mental Workload 1(3), 139–183 (1988)

    Article  Google Scholar 

  21. Rasmussen, C.E.: Gaussian processes for machine learning (2006)

    Google Scholar 

  22. Nguyen-Tuong, D., Peters, J.R., Seeger, M.: Local gaussian process regression for real time online model learning. In: Advances in Neural Information Processing Systems, pp.1193-1200 (2008)

    Google Scholar 

  23. Sweller, J.: Evolution of human cognitive architecture. Psychology of Learning and Motivation, 215-266 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Chaouachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chaouachi, M., Jraidi, I., Frasson, C. (2015). MENTOR: A Physiologically Controlled Tutoring System. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds) User Modeling, Adaptation and Personalization. UMAP 2015. Lecture Notes in Computer Science(), vol 9146. Springer, Cham. https://doi.org/10.1007/978-3-319-20267-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20267-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20266-2

  • Online ISBN: 978-3-319-20267-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics