Skip to main content

Thermal Modeling of Supercapacitors

  • Chapter
  • First Online:
Thermal Effects in Supercapacitors

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The previous chapter reviewed the experimentally observed variations in electrochemical performance with temperature. The performance of supercapacitors depends strongly on operating temperature; therefore it is necessary to model temperature variations inside a supercapacitor. The major advantage of theoretical models is that they provide an opportunity to avoid time-consuming and expensive experiments by predicting performance in a wide range of applications and then building guidelines based on those predictions (Ike et al. in J Power Sources 273:264–277, 2015 [13]). Models can be used to study the thermal behavior of supercapacitors and thereby to develop new thermal management strategies. In this chapter, fundamentals of thermal modeling and various modeling approaches for temperature evolution are discussed from a theoretical standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51

    Article  Google Scholar 

  2. Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905

    Article  Google Scholar 

  3. Hijazi A, Kreczanik P, Bideaux E et al (2012) Thermal network model of supercapacitors stack. IEEE Trans Ind Electron 59:979–987

    Article  Google Scholar 

  4. Guillemet P, Scudeller Y, Brousse T (2006) Multi-level reduced-order thermal modeling of electrochemical capacitors. J Power Sources 157:630–640

    Article  Google Scholar 

  5. Schiffer J, Linzen D, Sauer DU (2006) Heat generation in double layer capacitors. J Power Sources 160:765–772

    Article  Google Scholar 

  6. Laurendeau NM (2010) Statistical thermodynamics, fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  7. Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632

    Article  Google Scholar 

  8. Gualous H, Louahlia H, Gallay R (2011) Supercapacitor characterization and thermal modelling with reversible and irreversible heat effect. IEEE Trans Power Electron 26:3402–3409

    Article  Google Scholar 

  9. Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587

    Article  Google Scholar 

  10. Gualous H, Louahlia-Gualous H, Gallay R et al (2009) Supercapacitor thermal modeling and characterization in transient state for industrial applications. IEEE Trans Ind Appl 45

    Google Scholar 

  11. Lee DH, Kim US, Shin CB et al (2008) Modelling of the thermal behaviour of an ultracapacitor for a 42-V automotive electrical system. J Power Sources 175:664–668

    Article  Google Scholar 

  12. Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450

    Article  Google Scholar 

  13. Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277

    Article  Google Scholar 

  14. Henson W (2007) Optimal battery/ultracapacitor storage combination. J Power Sources 179:417–423

    Article  Google Scholar 

  15. Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708

    Article  Google Scholar 

  16. Lajnef W, Vinassa JM, Briat O et al (2005) Specification and use of pulsed current profiles for ultracapacitors power cycling. Microelectron Reliab 45:1746–1749

    Article  Google Scholar 

  17. Buller S, Thele M, Doncker RWAAD et al (2005) Impedance based simulation models of supercapacitor and Li-Ion batteries for power electronic applications. In IEEE Trans. Ind Appl, 742–747

    Google Scholar 

  18. IEC62391-1 (2006) Fixed electric double-layer capacitors for use in electronic equipment. Part I: generic specification. In: International standard IEC 62391-1

    Google Scholar 

  19. Zubieta L, Bonert R (2000) Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl 36:199–205

    Article  Google Scholar 

  20. De Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9:1231–1245

    Article  Google Scholar 

  21. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912

    Article  Google Scholar 

  22. Guillemet P, Pascot C, Scudeller Y (2008) Electro-thermal analysis of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and Systems, pp 224–228

    Google Scholar 

  23. Yang HZ, Zhang Y (2011) Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications. J Power Sources 196:8866–8873

    Article  Google Scholar 

  24. Levie RD (1967) Electrochemical response of porous and rough electrodes. Adv Electrochem Electrochem Eng 6:329–337

    Google Scholar 

  25. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  Google Scholar 

  26. Celzard A, Collas F, Mareche JF et al (2002) Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. J Power Sources 108:153–162

    Article  Google Scholar 

  27. Paasch G, Micka K, Gersdorf P (1993) Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim Acta 38:2653–2662

    Article  Google Scholar 

  28. Berrueta A, San Martín I, Hernández A et al (2014) Electro-thermal modelling of a supercapacitor and experimental validation. J Power Sources 259:154–165

    Article  Google Scholar 

  29. Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555

    Article  Google Scholar 

  30. Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159

    Article  Google Scholar 

  31. Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934

    Article  Google Scholar 

  32. Lajnef W, Vinassa JM, Azzopardi S et al (2004) First step in the reliability assessment of ultracapacitors used as power source in hybrid electric vehicles. Microelectron Reliab 44:1769–1773

    Article  Google Scholar 

  33. Xu X, Sammakia BG, Jung D et al (2011) Multiphysics approach to modeling supercapacitors for improving performance. In: Proceedings of the ASME 2011 pacific rim technical conference and exposition on packaging and integration of electronic and photonic systems. Portland, Oregon, USA

    Google Scholar 

  34. Gualous H, Louahlia-Gualous H, Gallay R et al (2007) Supercapacitor thermal characterization in transient state. In IEEE industry applications conference. IEEE, New Orleans, LA, pp 722–729

    Google Scholar 

  35. Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166

    Article  Google Scholar 

  36. Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560

    Article  Google Scholar 

  37. Frivaldsky M, Cuntala J, Spanik P (2014) Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions. Int J Therm Sci 84:34–47

    Article  Google Scholar 

  38. Chiang C-J, Yang J-L, Cheng W-C (2013) Dynamic modeling of the electrical and thermal behavior of ultracapacitors. In: IEEE conference on control and automation, pp 1839–1844

    Google Scholar 

  39. Chiang C-J, Yang J-L, Cheng W-C (2013) Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J Power Sources 234:234–243

    Article  Google Scholar 

  40. d’Entremont A, Pilon L (2014) First-order thermal model of commercial EDLCs. Appl Therm Eng 67:439–446

    Article  Google Scholar 

  41. Miller JR, Butler SM (2008) The impact of cell temperature non-uniformity on electrochemical capacitor system reliability. In: 3rd European symposium on supercapacitors and applications, Rome, Italy

    Google Scholar 

  42. Wang K, Zhang L, Ji B et al (2013) The thermal analysis on the stackable supercapacitor. Energy 59:440–444

    Article  Google Scholar 

  43. Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59

    Article  Google Scholar 

  44. Guillemet Ph, Pascot C, Scudeller Y (2008) Compact thermal modeling of electric double-layer-capacitors. In: 14th international workshop on thermal inveatigation of ICs and systems, pp 118–122

    Google Scholar 

  45. Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93

    Article  Google Scholar 

  46. Pesaran AA, Keyser M (2001) Thermal characteristics of selected EV and HEV batteries. In: Sixteenth annual battery conference on applications and advances. Long Beach, CA, pp 219–225

    Google Scholar 

  47. Barrade P, Rufer A (2008) Sizing of a supercapacitive tank: finite element thermal modeling. In 3rd European symposium on supercapacitors and applications, Rome, Italy

    Google Scholar 

  48. Xu X, Sammakia BG, Murray BT et al (2011) Thermal modeling and heat management of supercapacitor modules by high velocity impinging fan flow. ASME 2011 international mechanical engineering congress and exposition. Denver, Colorado, pp 1029–1037

    Google Scholar 

  49. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  50. d’Entremont A, Pilon L (2014) First-principles thermal modeling of electric double layer capacitors under constant-current cycling. J Power Sources 246:887–898

    Article  Google Scholar 

  51. Stern O (1924) The theory of the electrolyte double layer. Z Elektrochem Angew Phys Chem 30:508–516

    Google Scholar 

  52. Wang H, Thiele A, Pilon L (2013) Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson–Nernst–Planck model. J Phys Chem C 117:18286–18297

    Article  Google Scholar 

  53. Wang H, Pilon L (2012) Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta 64:130–139

    Article  Google Scholar 

  54. d’Entremont A, Wang H, Pilon L (2012) Scaling analysis of thermal behavior of electrical double layers. In: Proceedings of the ASME 2012 summer heat transfer conference, pp 395–403. American Society of Mechanical Engineers

    Google Scholar 

  55. Entremont Ad, Pilon L (2014) Scaling laws for heat generation and temperature oscillations in EDLCs under galvanostatic charging. Int J Heat Mass Transf 75:637–649

    Article  Google Scholar 

  56. d’Entremont AL, Pilon L (2015) Thermal effects of asymmetric electrolytes in electric double layer capacitors. J Power Sources 273:196–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Xiong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiong, G., Kundu, A., Fisher, T.S. (2015). Thermal Modeling of Supercapacitors. In: Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20242-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20242-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20241-9

  • Online ISBN: 978-3-319-20242-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics