Superconvergence of Some Linear and Quadratic Functionals for Higher-Order Finite Elements

  • Vladimir ShaydurovEmail author
  • Tianshi Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)


This paper deals with the calculation of linear and quadratic functionals of approximate solutions obtained by the finite element method. It is shown that under certain conditions the output functionals of an approximate solution are computed with higher order of accuracy than that of the solution itself. These abstract results are illustrated by two numerical examples for the Poisson equation.


Finite element method Output functionals Dual problems Hermite finite elements Bogner-Fox-Schmit element  Convergence order 


  1. 1.
    Shaydurov, V., Liu, T., Zheng, Z.: Four-stage computational technology with adaptive numerical methods for computational aerodynamics. Am. Inst. Phys. Conf. Proc. 1484, 42–48 (2012)Google Scholar
  2. 2.
    ADIGMA. A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 113, Berlin: Springer (2010)Google Scholar
  3. 3.
    Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Yue, H., Shaydurov, V.: Superconvergence of some output functionals for Hermitian finite elements. Young Scientist 12, 15–19 (2012)Google Scholar
  5. 5.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, New York (1973)zbMATHGoogle Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, New York (1978)zbMATHGoogle Scholar
  7. 7.
    Aubin, J.P.: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Scuola Norm. Sp. Pisa. 21, 599–637 (1967)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Nitsche, J.A.: Ein Kriterium für die Quasi-Optimalitat des Ritzchen Verfahrens. Numer. Math. 11, 346–348 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Oganesyan, L.A.: Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. Zh. Vychisl. Mat. i Mat. Fiz. 9, 1102–1120 (1969)zbMATHGoogle Scholar
  10. 10.
    Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Academic Press, New York (2003)zbMATHGoogle Scholar
  11. 11.
    Chen, Z., Wu, H.: Selected Topics in Finite Element Methods. Science Press, Beijing (2010)Google Scholar
  12. 12.
    Shaydurov, V., Shut, S., Gileva, L.: Some properties of Hermite finite elements on rectangles. Am. Inst. Phys. Cof. Proc. 1629, 32–43 (2014)Google Scholar
  13. 13.
    Bogner, F.K., Fox, R.L., Schmit, L.A.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, pp. 397–444. Wright-Patterson Air Force Base, Ohio (1965)Google Scholar
  14. 14.
    Zhang, S.: On the full C\(_{1}\)-Q\(_{k}\) finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2(6), 701–721 (2010). doi: 10.4208/aamm.09-m0993 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kondrat’ev, V.A.: Boundary-value problems for elliptic equations in domain with conic and angular points. Trans. Moscow Math. Soc. 16, 209–292 (1967)zbMATHGoogle Scholar
  16. 16.
    Gileva, L., Shaydurov, V., Dobronets, B.: The triangular Hermite finite element complementing the Bogner-Fox-Schmit rectangle. Appl. Math. 5(12A), 50–56 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computational Modeling of Siberian Branch of Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Beihang UniversityBeijingChina

Personalised recommendations