Numerical Simulation of Thermoelasticity Problems on High Performance Computing Systems

  • Petr V. SivtsevEmail author
  • Petr N. Vabishchevich
  • Maria V. Vasilyeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)


In this work we consider the coupled linear system of equations for temperature and displacements which describes the thermoelastic behaviour of the body. For numerical solution we approximate our system using finite element method. As model problem for simulation we consider the thermomechanical state of the ceramic substrates with metallization, which are used for the manufacturing of light-emitting diode modules. The results of numerical simulation of the 3D problem in the complex geometric area are presented.


Heat Transfer Coefficient Temperature Increment Ceramic Substrate Lame Constant Linear Thermal Expansion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lubliner, J.: Plasticity theory. Dover Publications, New York (2008)zbMATHGoogle Scholar
  3. 3.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Interdisciplinary Applied Mathematics, vol. 7. Springer, New York (1998)zbMATHGoogle Scholar
  4. 4.
    Nowacki, W.: Dynamic Problems of Thermoelasticity, 1st edn. Springer, Heidelberg (1975)Google Scholar
  5. 5.
    Samarskii, A., Nikolaev, E.: Methods of Solving Grid Equations (1978)Google Scholar
  6. 6.
    Gaspar, F., Lisbona, F., Vabishchevich, P.: A finite difference analysis of Biot’s consolidation model. Appl. Numer. Math. 44(4), 487–506 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Lisbona, F., Vabishchevich, P.: Operator-splitting schemes for solving unsteady elasticity problems. Comput. Methods Appl. Math. 1(2), 188–198 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Afanas’eva, N., Vabishchevich, P., Vasil’eva, M.: Unconditionally stable schemes for convection-diffusion problems. Russian Math. 57(3), 1–11 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Vabishchevich, P., Vasil’eva, M.: Explicit-implicit schemes for convection-diffusion-reaction problems. Numer. Anal. Appl. 5(4), 297–306 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kolesov, A., Vabishchevich, P., Vasil’eva, M.: Splitting schemes for poroelasticity and thermoelasticity problems. Comput. Math. Appl. 67(12), 2185–2198 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg (2012)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Petr V. Sivtsev
    • 1
    Email author
  • Petr N. Vabishchevich
    • 2
  • Maria V. Vasilyeva
    • 1
  1. 1.North-Eastern Federal UniversityYakutskRussia
  2. 2.Nuclear Safety InstituteMoscowRussia

Personalised recommendations