Advertisement

Numerical Solutions of Fractional Differential Equations by Extrapolation

  • Kamal Pal
  • Fang Liu
  • Yubin YanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)

Abstract

An extrapolation algorithm is considered for solving linear fractional differential equations in this paper, which is based on the direct discretization of the fractional differential operator. Numerical results show that the approximate solutions of this numerical method has the expected asymptotic expansions.

Notes

Acknowledgements

We wish to express our sincere gratitude to Professor Neville. J. Ford for his encouragement, discussions and valuable criticism during the research of this work.

References

  1. 1.
    Brezinski, C.: A general extrapolation algorithm. Numer. Math. 35, 175–187 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods, Theory and Practice. North Holland, Amsterdam (1992)Google Scholar
  3. 3.
    Diethelm, K.: Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 17, 479–493 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Diethelm, K.: Monotonicity results for a compound quadrature method for finite-part integrals. J. Inequalities Pure Appl. Math. 5(2) (2004). (Article 44)Google Scholar
  7. 7.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29, 3–22 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6, 243–263 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Frac. Calc. Appl. 5(3S), 1–45 (2014)MathSciNetGoogle Scholar
  12. 12.
    Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Walz, G.: Asymptotics and Extrapolation. Akademie-Verlag, Berlin (1996)Google Scholar
  14. 14.
    Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014). doi: 10.1007/s10543-013-0443-3 zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChesterChesterUK
  2. 2.Department of MathematicsLvliang UniversityLishiPeople’s Republic of China

Personalised recommendations