Skip to main content

Modeling the Wind Influence on Acoustic-Gravity Propagation Waves in a Heterogeneous Earth-Atmosphere Model

  • Conference paper
  • First Online:
Finite Difference Methods,Theory and Applications (FDM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9045))

Included in the following conference series:

  • 2564 Accesses

Abstract

A numerical-analytical algorithm for modeling of seismic and acoustic-gravity waves propagation is applied to a heterogeneous “Earth-Atmosphere" model. Seismic wave propagation in an elastic half-space is described by a system of first-order dynamic equations of elasticity theory. The propagation of acoustic-gravity waves in the atmosphere is described by the linearized Navier-Stokes equations with the wind. The algorithm is based on the integral Laguerre transform with respect to time, the finite integral Fourier transform with respect to a spatial coordinate combined with a finite difference method for the reduced problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekseev, A.S., Glinsky, B.M., Dryakhlov, S.I., et al.: The effect of acoustic-seismic induction in vibroseismic sounding. Dokl. RAN. 346(5), 664–667 (1996)

    Google Scholar 

  2. Gasilova, L.A., Petukhov, Y.V.: On the theory of surface wave propagation along different interfaces in the atmosphere. Izv. RAN. Fizika atmosfery i okeana 35(1), 14–23 (1999)

    MathSciNet  Google Scholar 

  3. Razin, A.V.: Propagation of a spherical acoustic delta wavelet along the gas-solid interface. Izv. RAN. Fizika zemli. 2, 73–77 (1993)

    Google Scholar 

  4. Mikhailenko, B.G., Reshetova, G.V.: Mathematical simulation of propagation of seismic and acoustic-gravitational waves for an inhomogeneous Earth-Atmosphere model. Geologiya i geofizika 47(5), 547–556 (2006)

    Google Scholar 

  5. Mikhailenko, B.G.: Spectral Laguerre method for the approximate solution of time dependent problems. Appl. Math. Lett. 12, 105–110 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Konyukh, G.V., Mikhailenko, B.G., Mikhailov, A.A.: Application of the integral Laguerre transforms for forward seismic modeling. J. Comput. Acoust. 9(4), 1523–1541 (2001)

    Article  MathSciNet  Google Scholar 

  7. Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V.: Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method. J. Pure Appl. Geophys. 160, 1207–1224 (2003)

    Article  Google Scholar 

  8. Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V.: Numerical viscoelastic modeling by the spectral Laguerre method. Geophys. Prospect. 51, 37–48 (2003)

    Article  Google Scholar 

  9. Imomnazarov, K.K., Mikhailov, A.A.: Use of the spectral Laguerre method to solve a linear 2D dynamic problem for porous media. Sib. Zh. Industr. matem. 11(2), 86–95 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Mikhailov, A.A.: Simulation of seismic fields for 2.5D inhomogeneous viscoelastic media. Proc. of the Intern. Conference “Mathematical Methods in Geophysics". Novosibirsk. Part 1, 146–152 (2003)

    Google Scholar 

  11. Suetin, P.K.: Classical orthogonal polynomials, p. 327. Nauka, Moscow (1999)

    Google Scholar 

  12. Virieux, J.: P-, SV- wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  13. Saad, Y., Van der Vorst, H.A.: Iterative solution of linear systems in the 20\(^{th}\) century. J. Comput. Appl. Math. 123, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear system. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (project 14-05-00867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Reshetova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mikhailenko, B., Mikhailov, A.A., Reshetova, G.V. (2015). Modeling the Wind Influence on Acoustic-Gravity Propagation Waves in a Heterogeneous Earth-Atmosphere Model. In: Dimov, I., FaragĂ³, I., Vulkov, L. (eds) Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science(), vol 9045. Springer, Cham. https://doi.org/10.1007/978-3-319-20239-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20239-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20238-9

  • Online ISBN: 978-3-319-20239-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics