Error Estimates of Four Level Conservative Finite Difference Schemes for Multidimensional Boussinesq Equation

  • Natalia KolkovskaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)


A family of four level conservative finite difference schemes (FDS) for the multidimensional Boussinesq Equation is constructed and studied theoretically. A preservation of the discrete energy for this approach is established. We prove that the discrete solution of the FDS converges to the exact solution with a second order of convergence with respect to space and time mesh steps in the first discrete Sobolev norm and in the uniform norm. The numerical experiments for the one-dimensional problem confirm the theoretical rate of convergence and the preservation of the discrete energy in time.


Solitary Wave Time Level Finite Difference Scheme Discrete Solution Discrete Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by the Bulgarian Science Fund under grant DDVU 02/71.


  1. 1.
    Bratsos, A.: A predictor-corrector scheme for the improved Boussinesq equation. Chaos, Solitons Fractals 40, 2083–2084 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Chertock, A., Christov, C., Kurganov, A.: Central-upwind schemes for the boussinesq paradigm equation. Comp. Sci. High Perform. Comp IV NNFM 113, 267–281 (2011)MathSciNetGoogle Scholar
  3. 3.
    Choo, S.M.: Pseudo spectral methods for the damped Boussinesq equation. Comm. Korean Math. Soc. 13, 889–901 (1998)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Choo, S.M., Chung, S.K.: Numerical solutions for the damped Boussinesq equation by FD-FFT-perturbation method. Comp. Math. with Appl. 47, 1135–1140 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Christou, M., Christov, C.I.: Galerkin spectral method for the 2D solitary waves of Boussinesq paradigm equation. AIP 1186, 217–224 (2009)MathSciNetGoogle Scholar
  6. 6.
    Christov, C.I.: An energy-consistent dispersive shallow-water model. Wave motion 34, 161–174 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dimova, M., Kolkovska, N.: Comparison of some finite difference schemes for Boussinesq paradigm equation. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 215–220. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    El-Zoheiry, H.: Numerical study of the improved Boussinesq equation. Chaos, Solitons and Fractals 14, 377–384 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kolkovska, N.T.: Convergence of finite difference schemes for a multidimensional Boussinesq equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 469–476. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Kolkovska, N.: Four level conservative finite difference schemes for Boussinesq paradigm equation. AIP 1561, 68–74 (2013)Google Scholar
  11. 11.
    Kolkovska, N., Angelow, K.: A multicomponent alternating direction method for numerical solution of Boussinesq paradigm equation. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 371–378. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Kolkovska, N., Dimova, M.: A new conservative FDS for Boussinesq paradigm equation. Cent. Eu. J. Math. 10, 1159–1171 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kutev, N., Kolkovska, N., Dimova, M.: Global existence of Cauchy problem for Boussinesq paradigm equation. Comp. and Math. with Appl. 65(3), 500–511 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kutev, N., Kolkovska, N., Dimova, M.: Global existence to generalized Boussinesq equation with combined power-type nonlinearities. J. Math. Anal. Appl. 410, 427–444 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ortega, T., Sanz-Serna, J.M.: Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation. Numer. Math. 58, 215–229 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Pani, A., Saranga, H.: Finite element galerkin method for the “Good” Boussinesq equation. Nonlinear Anal. 29, 937–956 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Polat, N., Ertas, A.: Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation. J. Math. Anal. Appl. 349, 10–20 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Shokri, A., Dehghan, M.: A Not-a-Knot meshless method using radial basis functions and predictorcorrector scheme to the numerical solution of improved Boussinesq equation. Comp. Phys. Commun. 181, 1990–2000 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Runzhang, X., Yacheng, L.: Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equation. J. Math. Anal. Appl. 359, 739–751 (2009)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations