Effectiveness of the Parallel Implementation of the FEM for the Problem of the Surface Waves Propagation

  • Evgeniya KarepovaEmail author
  • Ekaterina Dementyeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)


In this paper effectiveness of several parallel implementations of the finite element method is investigated for an algorithm of a numerical solution of the boundary function problem for the shallow water equations. The parallel technologies MPI, OpenMP and MPI+OpenMP are used.


data assimilation problem finite element method and high performance computation 


  1. 1.
    Marchuk, G.I., Kagan, B.A.: Dynamics of Ocean Tides. Leningrad, Gidrometizdat (1983)Google Scholar
  2. 2.
    Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  3. 3.
    Kowalik, Z., Polyakov, I.: Tides in the Sea of Okhotsk. J. Phys. Oceanogr. 28(7), 1389–1409 (1998)CrossRefGoogle Scholar
  4. 4.
    Agoshkov, V.I.: Inverse problems of the mathematical theory of tides: boundary-function problem. Russ. J. Numer. Anal. Math. Modelling 20(1), 1–18 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kamenshchikov, L.P., Karepova, E.D., Shaidurov, V.V.: Simulation of surface waves in basins by the finite element method. Russ. J. Numer. Anal. Math. Model. 21(4), 305–320 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ilin, V.P.: Methods and technologies of finite elements. ICMMG SB RAS Press, Novosibirsk (2007)Google Scholar
  7. 7.
    Choporov, S.: Parallel Computing Technologies in the Finite Element Method. In: Third International Conference “High Performance Computing” HPC-UA 2013, pp. 85–91. Kyiv (2013)Google Scholar
  8. 8.
    Vutov, Y.: Parallel incomplete factorization of 3D NC FEM elliptic systems. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 114–121. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Jimack, P.K., Touheed, N.: Developing parallel finite element soft-ware using MPI. In: High Performance Computing for Computational Mechanics, pp. 15–38 (2000)Google Scholar
  10. 10.
    Pantale, O.: Parallelization of an object-oriented FEM dynamics code: influence of the strategies on the Speedup. Adv. Eng. Softw. 36(6), 361–373 (2005)CrossRefGoogle Scholar
  11. 11.
    Mahinthakumar, G., Saied, F.: A hybrid MPI-openMP implementation of an implicit finite-element code on parallel architectures. Int. J. High Perform. Comput. Appl. 16(4), 371–393 (2002)Google Scholar
  12. 12.
    Vargas-Felix, M., Botello-Rionda, S.: Solution of finite element problems using hybrid parallelization with MPI and openMP. Acta Universitaria 22(7), 14–24 (2012)Google Scholar
  13. 13.
    Karepova, E., Dementyeva, E.: The numerical solution of the boundary function inverse problem for the tidal models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 345–354. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Dementeva, E., Karepova, E., Shaidurov, V.: Recovery of a boundary function by observation data in a problem for the shallow water model. AIP Conf. Proc. 1629, 373–380 (2014)Google Scholar
  15. 15.
    Hybrid cluster of SSCC SB RAS. Available via DIALOG.
  16. 16.
    Gergel, V.P.: High-performance computing for the multicore multiprocessor systems. NNSU Publ, Nizhny Novgorod (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computational Modelling of SB RAS, Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations