A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics

  • Anton Arnold
  • Matthias EhrhardtEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)


This work deals with the derivation of a novel transparent boundary condition (TBC) for the coupling of the standard “parabolic” equation (SPE) in underwater acoustics (assuming cylindrical symmetry) with an elastic parabolic equation (EPE) for modelling the sea bottom extending hereby the existing TBCs for a fluid model of the seabed.


Transparent boundary condition Elastic bottom  One-way Helmholtz equation Standard “parabolic” equation Seabed interface 



The first author was supported by the FWF (project I 395-N16 and the doctoral school “Dissipation and dispersion in non-linear partial differential equations”).


  1. 1.
    Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)MathSciNetGoogle Scholar
  2. 2.
    Antonopoulou, D.C., Dougalis, V.A., Zouraris, G.E.: Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics. SIAM J. Numer. Anal. 47, 2752–2781 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Des. 6, 313–319 (1998)CrossRefGoogle Scholar
  4. 4.
    Arnold, A., Ehrhardt, M.: Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comp. Phys. 145, 611–638 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Collins, M.D.: A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am. 86, 1459–1464 (1989)CrossRefGoogle Scholar
  6. 6.
    Dougalis, V.A., Sturm, F., Zouraris, G.E.: On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom. Math. Meth. Appl. Sci. 32, 1519–1540 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ehrhardt, M., Mickens, R.E.: Solutions to the discrete airy equation: application to parabolic equation calculations. J. Comput. Appl. Math. 172, 183–206 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Greene, R.R.: The rational approximation to the acoustic wave equation with bottom interaction. J. Acoust. Soc. Am. 76, 1764–1773 (1984)CrossRefGoogle Scholar
  9. 9.
    Greene, R.R.: A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces. J. Acoust. Soc. Am. 77, 1991–1998 (1985)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. AIP Press, New York (1994)Google Scholar
  11. 11.
    Levy, M.F.: Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems. IEEE Trans. Antennas Propag. 45, 66–72 (1997)CrossRefGoogle Scholar
  12. 12.
    Makrakis, G.N.: Asymptotic study of the elastic seabed effects in ocean acoustics. Appl. Anal. 66, 357–375 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Papadakis, J.S.: Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics. NORDA Parabolic Equation Workshop, NORDA Technical note 143 (1982)Google Scholar
  14. 14.
    Papadakis, J.S., Taroudakis, M.I., Papadakis, P.J., Mayfield, B.: A new method for a realistic treatment of the sea bottom in the parabolic approximation. J. Acoust. Soc. Am. 92, 2030–2038 (1992)CrossRefGoogle Scholar
  15. 15.
    Papadakis, J.S.: Impedance bottom boundary conditions for the parabolic-type approximations in underwater acoustics. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations VII, pp. 585–590. IMACS, New Brunswick (1992)Google Scholar
  16. 16.
    Sturm, F., Kampanis, N.A.: Accurate treatment of a general sloping interface in a finite-element 3D narrow-angle PE model. J. Comput. Acoust. 15, 285–318 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tappert, F.D.: The parabolic approximation method. In: Keller, J.B., Papadakis, J.S. (eds.) Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, vol. 70, pp. 224–287. Springer, New York (1977)CrossRefGoogle Scholar
  18. 18.
    Thomson, D.J.: Wide-angle parabolic equation solutions to two range-dependent benchmark problems. J. Acoust. Soc. Am. 87, 1514–1520 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wetton, B.T., Brooke, G.H.: One-way wave equations for seismoacoustic propagation in elastic waveguides. J. Acoust. Soc. Am. 87, 624–632 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, Z.Y., Tindle, C.T.: Improved equivalent fluid approximations for a low shear speed ocean bottom. J. Acoust. Soc. Am. 98, 3391–3396 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Analysis Und Scientific ComputingTechnische Universität WienWienAustria
  2. 2.Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Fachbereich C – Mathematik und NaturwissenschaftenBergische Universität WuppertalWuppertalGermany

Personalised recommendations