Skip to main content

Probing Gravity with Next Generation Lunar Laser Ranging

  • Chapter
  • First Online:

Abstract

Lunar and satellite laser ranging (LLR/SLR) are consolidated techniques which provide a precise, and at the same time, cost-effective method to determine the orbits of the Moon and of satellites equipped with laser retroreflectors with respect to the International Celestial Reference System. We describe the precision tests of general relativity and of new theories of gravity that can be performed with second-generation LLR payloads on the surface of the Moon (NASA/ASI MoonLIGHT project), and with SLR/LLR payloads deployed on spacecraft in the Earth–Moon system. A new wave of lunar exploration and lunar science started in 2007–2008 with the launch of three missions (Chang’e by China, Kaguya by Japan, Chandrayaan by India), missions in preparation (LCROSS, LRO, GRAIL/LADEE by NASA) and other proposed missions (like MAGIA in Italy). This research activity will be greatly enhanced by the future robotic deployment of a lunar geophysics network (LGN) on the surface of the Moon. A scientific concept of the latter is the International Lunar Network (ILN, see http://iln.arc.nasa.gov/). The LLR retroreflector payload developed by a US–Italy team described here and under space qualification at the National Laboratories of Frascati (LNF) is the optimum candidate for the LGN, which will be populated in the future by any lunar landing mission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shapiro II, Reasenberg RD, Chandler JF, Babcock RW. Measurement of the de Sitter precession of the Moon: a relativistic three-body effect. Phys Rev Lett. 1988;61:2643–6.

    Article  ADS  Google Scholar 

  2. Bertotti B, Ciufolini I, Bender PL. New test of general relativity: measurement of de Sitter geodetic precession rate for lunar perigee. Phys Rev Lett. 1987;58:1062–5.

    Article  ADS  MathSciNet  Google Scholar 

  3. Williams JG, Newhall XX, Dickey Jean O. Lunar moments, tides, orientation, and coordinate frames. Planet Space Sci. 1996;44:1077–80.

    Article  ADS  Google Scholar 

  4. Williams JG, Turyshev SG, Boggs DH, Ratcliff JT. Lunar laser ranging science: gravitational physics and lunar interior and geodesy. Adv Space Res. 2006;37(1):67–71.

    Article  ADS  Google Scholar 

  5. Dell’Agnello S., Currie D., Delle Monache G, et al. MoonLIGHT: a lunar laser ranging retroreflector array for the 21st century. Paper # GLEX-2012.02.1.7x12545 in Proceedings of the Global Lunar Exploration Conference; May 2012; Washington, USA.

    Google Scholar 

  6. Alley CO, Chang RF, Currie DG, Mullendore J, Poultney SK, Rayner JD, Silverberg EC, Steggerda CA, Plotkin HH, Williams W, Warner B, Richardson H, Bopp B. Apollo 11 laser ranging retroreflector: initial measurements from the McDonald observatory. Science. 1970;167(3917):368–70.

    Google Scholar 

  7. Chang RF, Alley CO, Currie DG, Faller JE. Optical properties of the Apollo laser ranging retroreflector arrays. Space Res XII. 1971;1:247– 59.

    Google Scholar 

  8. Bender PL, Currie DG, Dicke RH, Eckhardt DH, Faller JE, Kaula WM, Mulholland JD, Plotkin HH, Poultney SK, Silverberg EC, Wilkinson DT, Williams JG, Alley CO. The lunar laser ranging experiment. Science. 1973;182(4109):229–38.

    Article  ADS  Google Scholar 

  9. Currie D, Dell’Agnello S, Delle Monache G. A lunar laser ranging retroreflector array for the 21st century. Acta Astronaut 2011;68:667–80.

    Article  ADS  Google Scholar 

  10. Lops C, Martini M. Horizons in Earth science research. Vol. 5. New York: Nova; 2011. (ISBN: 978-1-61209-923-1).

    Google Scholar 

  11. Martini M, et al. Probing gravity with second generation Lunar Laser Ranging. Talk for the XIII LNF Spring School in Nuclear, Subnuclear and Astroparticle Physics, Frascati, 12–16 May 2008.

    Google Scholar 

  12. Lops C. et al. Probing gravity in Near Earth orbits with LAGEOS and LARES. Talk for the XIII LNF Spring School in Nuclear, Subnuclear and Astroparticle Physics, Frascati, 12–16 May 2008.

    Google Scholar 

  13. A scientific concept for the LGN has been developed by the International Lunar Network (see http://iln.arc.nasa.gov/). See Core Instrument and Communications Working Group Final Reports.

  14. Dell’Agnello S, et al. Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS. Adv Space Res. 2011;47:822–42. http://ilrs.gsfc.nasa.gov/docs/ETRUSCO_PaperPublished_JASR.pdf.

    Article  ADS  Google Scholar 

  15. Dell’Agnello S. ETRUSCO-2: An ASI-INFN project of technological development and SCF-Test of GNSS LASER retroreflector arrays. 3rd International Colloquium on Scientific and Fundamental Aspects of the Galileo Programme; August 2011; Copenhagen, Denmark. http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/ga01_reflector.html.

  16. Chandler JF, Reasenberg RD, Shapiro II. On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories. In: Jantzen RT, Mac Keiser G, Ruffini R, editors. Proceedings of the Seventh Marcel Grossman Meeting; 24–30 July 1994; p. 1501; Stanford, USA; 1996.

    Google Scholar 

  17. Battat JBR, Chandler JF, Stubbs CW. Testing for Lorentz violation: constraints on standard-model-extension parameters via lunar laser ranging. Phys Rev Lett. 2007;99:241103, arXiv:0710.0702.

    Google Scholar 

  18. Battat JBR, Murphy TW, et al. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): two years of millimeter-precision measurements of the Earth-Moon range. Publications of The Astronomical Society of the Pacific, 2009;121:29–40.

    Google Scholar 

  19. Murphy Jr. TW, Adelberger EG, Strasburg JD, Stubbs CW. APOLLO: Multiplexed Lunar Laser Ranging. 13th international workshop on laser ranging; October 2002; Washington DC, USA. http://physics.ucsd.edu/~tmurphy/apollo/doc/multiplex.pdf.

  20. March R, Bellettini G, Tauraso R, Dell’Agnello S. Constraining spacetime torsion with the Moon and Mercury. Phys Rev D. 2011;83:104008.

    Article  ADS  Google Scholar 

  21. March R, Bellettini G, Tauraso R, Dell’Agnello S. Constraining spacetime torsion with LAGEOS. Gen Relativ Gravit. 2011;43(11):3099–126.

    Article  ADS  MATH  Google Scholar 

  22. Baessler S, Adelberger EG et al. Improved test of the equivalence principle for gravitational self-energy. Phys Rev Lett. 1999;83:3585.

    Google Scholar 

  23. Bertotti B, Iess L, Tortora P. A test of general relativity using radio links with the Cassini spacecraft. Nature. 2003;425:374–6.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Ryan Heller, Griffin Hosseinzadeh (DOE/INFN Summer Exchange Program for 2012), and Chiara Mondaini for the English revision of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martini, M., Dell’Agnello, S. (2016). Probing Gravity with Next Generation Lunar Laser Ranging. In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds) Gravity: Where Do We Stand?. Springer, Cham. https://doi.org/10.1007/978-3-319-20224-2_5

Download citation

Publish with us

Policies and ethics