Skip to main content

The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos

  • Chapter
  • First Online:
  • 1501 Accesses

Abstract

General relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the universe is dark, namely, it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of \( 10^{-10}\) m s\(^{-2}\). In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains general relativity and Newtonian gravity in the weak field limit and MOND as the ultra-weak field limit is still an open question.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the standard parametrization for the Hubble constant today \(H_0=100 \, h\) km s\(^{-1}\) Mpc\(^{-1}\).

  2. 2.

    A year later, Bekenstein and Milgrom [20] showed that, in spherical symmetry, Eq. (1) is equivalent to a modified theory of gravity where the standard Poisson equation is replaced by

    $$ \nabla\cdot\left[\mu\left(\vert\nabla\Phi\vert\over a_0\right)\nabla\Phi\right] = 4\pi G\rho, $$
    (2)

    where \(\Phi \) is the gravitational potential and \(\rho \) the mass distribution. A more recent modified theory of gravity that reproduces Eq. (1) is the quasi-linear formulation of MOND (QUMOND) [21]. This theory has the advantage of involving only linear differential equations and one nonlinear algebraic step. See [15] for a comprehensive review of the various formulations of MOND as modified dynamics or modified gravity.

  3. 3.

    In the standard model, the cluster virial mass scales as \(M_{\rm vir} \propto \rho_c(z) \Delta_c(z) R^3 \), where \(R\) is the cluster size in proper units (not comoving), \(\rho_c(z)=3H^2(z)/(8\pi G)\) is the critical density of the universe and \(\Delta_c(z)\) is the cluster density in units of \(\rho_c(z)\). A widely used approximation is

    $$\Delta_c(z)=18\pi^2 + \left\{ \begin{array}{ll} 60 w - 32 w^2, &\Omega_m\le 1,\quad \Omega_\Lambda= 0\\ 82 w - 39 w^2, &\Omega_m+\Omega_\Lambda=1, \end{array}\right.$$
    (4)

    where \(w=\Omega_m(z)-1\) [97]. Now, \(\rho_c(z)\) scales with redshift \(z\) as \(\rho_c(z)\propto E^2(z) = \Omega_m(1+z)^3 + (1-\Omega_m-\Omega_\Lambda )(1+z)^2+ \Omega_\Lambda \). The cluster size thus scales as \(R\propto M_{\rm vir}^{1/3} \Delta_c^{-1/3}(z) E^{-2/3}(z)\), and the temperature as \(T\propto M_{\rm vir}/R \propto M_{\rm vir}^{2/3} \Delta_c^{1/3}(z) E^{2/3}(z)\).

  4. 4.

    In this section, we use units where the speed of light \(c=1\).

References

  1. Oort JH. Bull Astron Inst Neth. 1932;6:249.

    Google Scholar 

  2. Zwicky F. Helv Phys Acta. 1933;6:110.

    Google Scholar 

  3. Roberts MS, Rots AH. A&A. 1973;26:483.

    Google Scholar 

  4. Ostriker JP, Peebles PJE. ApJ. 1973;186:467.

    Google Scholar 

  5. Einasto J, Kaasik A, Saar E. Nature. 1974;250:309.

    Google Scholar 

  6. Diaferio A. The evidence for unusual gravity from the large-scale structure of the Universe, Proceedings of the 1st AFI symposium in from the vacuum to the universe (Innsbruck, Austria, October 2007), In: Bass SD, Schallhart F, Tasser B, editors. Innsbruck University Press; 2008. p. 71-85 (arXiv:0802.2532).

    Google Scholar 

  7. Bertone G, Hooper D, Silk J. Phys Rep. 2005;405:279.

    Google Scholar 

  8. Smoot GF, Bennett CL, Kogut A, et al. ApJL. 1992;396:L1.

    Google Scholar 

  9. Kirkman D, Tytler D, Suzuki N, O’Meara JM, Lubin D. ApJS. 2003;149:1.

    Google Scholar 

  10. Spergel DN, Bean R, Doré O, et al. ApJS. 2007;170:377.

    Google Scholar 

  11. Komatsu E, Smith KM, Dunkley J, et al. ApJS. 2011;192:18.

    Google Scholar 

  12. de Bernardis P, Ade PAR, Bock JJ, et al. ApJ. 2002;564:559.

    Google Scholar 

  13. Bianchi E, Rovelli C. 2010. arXiv:1002.3966.

    Google Scholar 

  14. Milgrom M. ApJ. 1983;270:365.

    Google Scholar 

  15. Famaey B, McGaugh S. Living reviews in relativity 15. 2012. http://www.livingreviews.org/lrr-2012-6. Accessed Feb 2015.

  16. Milgrom M. ApJ. 1983;270:371.

    Google Scholar 

  17. Milgrom M. ApJ. 1983;270:384.

    Google Scholar 

  18. Bernal T, Capozziello S, Cristofano G, de Laurentis M. Mod Phys Lett A. 2011;26:2677.

    Google Scholar 

  19. McGaugh SS. ApJ. 2004;609:652.

    Google Scholar 

  20. Bekenstein J, Milgrom M. ApJ. 1984;286:7.

    Google Scholar 

  21. Milgrom M. MNRAS. 2010;403:886.

    Google Scholar 

  22. Tully RB, Fisher JR. A&A. 1977;54:661.

    Google Scholar 

  23. McGaugh SS. ApJ. 2005;632:859.

    Google Scholar 

  24. Reiprich TH. Ph.D. Thesis, Ludwig-Maximilians-Universität. 2001.

    Google Scholar 

  25. McGaugh SS. IAU symposium. 2008;244:136.

    Google Scholar 

  26. Steinmetz M, Navarro JF. ApJ. 1999;513:555.

    Google Scholar 

  27. Desmond H. 2012. arXiv:1204.1497.

    Google Scholar 

  28. Dutton AA. 2012. arXiv:1206.1855.

    Google Scholar 

  29. Wyder TK, Martin DC, Barlow TA, et al. ApJ. 2009;696:1834.

    Google Scholar 

  30. van der Kruit PC, Freeman KC. ARA&A. 2011;49:301.

    Google Scholar 

  31. McGaugh SS, de Blok WJG. ApJ. 1998;499:66.

    Google Scholar 

  32. Leroy AK, Walter F, Brinks E, et al. AJ. 2008;136:2782.

    Google Scholar 

  33. Bigiel F, Leroy A, Walter F, et al. AJ. 2010;140:1194.

    Google Scholar 

  34. Gentile G, Famaey B, Zhao H, Salucci P. Nature. 2009;461:627.

    Google Scholar 

  35. Bell EF, McIntosh DH, Katz N, Weinberg MD. ApJS. 2003;149:289.

    Google Scholar 

  36. Fraternali F, Sancisi R, Kamphuis P. A&A. 2011;531:A64.

    Google Scholar 

  37. Angus GW, van der Heyden K, Diaferio A. A&A. 2012. in press.

    Google Scholar 

  38. McGaugh SS. ApJ. 2008;683:137.

    Google Scholar 

  39. Famaey B, Binney J. MNRAS. 2005;363:603.

    Google Scholar 

  40. Famaey B, Bruneton J-P, Zhao H. MNRAS. 2007;377:L79.

    Google Scholar 

  41. Bienaymé O, Famaey B, Wu X, Zhao HS, Aubert D. A&A. 2009;500:801.

    Google Scholar 

  42. Faber SM, Jackson RE. ApJ. 1976;204:668.

    Google Scholar 

  43. Milgrom M. ApJ. 1984;287:571.

    Google Scholar 

  44. Sanders RH. MNRAS. 2000;313:767.

    Google Scholar 

  45. Cardone VF, Angus G, Diaferio A, Tortora C, Molinaro R. MNRAS. 2011;412:2617.

    Google Scholar 

  46. O’Sullivan E, Forbes DA, Ponman TJ. MNRAS. 2001;328:461.

    Google Scholar 

  47. Humphrey PJ, Buote DA, O’Sullivan E, Ponman TJ. 2012. arXiv:1204.3095.

    Google Scholar 

  48. Romanowsky AJ, et al. Science. 2003;301:1696.

    Google Scholar 

  49. Milgrom M, Sanders RH. ApJL. 2003;599:L25.

    Google Scholar 

  50. Tiret O, Combes F, Angus GW, Famaey B, Zhao HS. A&A. 2007;476:L1.

    Google Scholar 

  51. Schuberth Y, Richtler T, Hilker M, Salinas R, Dirsch B, Larsen SS. arXiv:1205.2093.

    Google Scholar 

  52. Milgrom M. 2012. arXiv:1205.1308.

    Google Scholar 

  53. Kosowsky A. Adv Astron. 2010;2010:4.

    Google Scholar 

  54. Milgrom M. ApJ. 1995;455:439.

    Google Scholar 

  55. Walker MG, Mateo M, Olszewski EW, et al. ApJL. 2007;667:L53.

    Google Scholar 

  56. Serra AL, Angus GW, Diaferio A. A&A. 2010;524:A16.

    Google Scholar 

  57. Angus GW. MNRAS. 2008;387:1481.

    Google Scholar 

  58. Diaferio A. MNRAS. 1999;309:610.

    Google Scholar 

  59. Serra AL, Diaferio A, Murante G, Borgani S. MNRAS. 2011;412:800.

    Google Scholar 

  60. McGaugh SS, Wolf J. ApJ. 2010;722:248.

    Google Scholar 

  61. Li Y-S, Helmi A. MNRAS. 2008;385:1365.

    Google Scholar 

  62. Angus GW, Diaferio A, Kroupa P. MNRAS. 2011;416:1401.

    Google Scholar 

  63. Klimentowski J, Łokas EL, Knebe A, et al. MNRAS. 2010;402:1899.

    Google Scholar 

  64. Kroupa P. Famaey B, de Boer KS, et al. A&A. 2010;523:A32.

    Google Scholar 

  65. Pawlowski MS, Kroupa P, de Boer KS. A&A. 2011;532:A118.

    Google Scholar 

  66. Pawlowski MS, Kroupa P, Angus G, et al. 2012. arXiv:1204.6039.

    Google Scholar 

  67. Duc P-A. 2012. arXiv:1205.2297.

    Google Scholar 

  68. Mirabel IF, Dottori H, Lutz D. A&A. 1992;256:L19.

    Google Scholar 

  69. Milgrom M. ApJL. 2007;667:L45.

    Google Scholar 

  70. Gentile G, Famaey B, Combes F, et al. A&A. 2007;472:L25.

    Google Scholar 

  71. Bournaud F. Adv Astron. 2010;1. arXiv:0907.3831.

    Google Scholar 

  72. Moore B, Ghigna S, Governato F, et al. ApJL. 1999;524:L19.

    Google Scholar 

  73. Guo Q, White S, Boylan-Kolchin M, et al. MNRAS. 2011;413:101.

    Google Scholar 

  74. Bovy J, Dvorkin C. 2012. arXiv:1205.2083.

    Google Scholar 

  75. Simon JD, Geha M. ApJ. 2007;670:313.

    Google Scholar 

  76. Boylan-Kolchin M, Bullock JS, Kaplinghat M. MNRAS. 2012;422:1203.

    Google Scholar 

  77. Hensler G. 2012. arXiv:1205.1243.

    Google Scholar 

  78. Kroupa P. 2012. arXiv:1204.2546.

    Google Scholar 

  79. Walker MG. 2012. arXiv:1205.0311.

    Google Scholar 

  80. Kravtsov AV, Gnedin OY. ApJ. 2005;623:650.

    Google Scholar 

  81. Kravtsov A. Adv Astron. 2010;2010:8.

    Google Scholar 

  82. Gentile G, Famaey B, Angus G, Kroupa P. A&A. 2010;509:A97.

    Google Scholar 

  83. Ibata R, Sollima A, Nipoti C, et al. ApJ. 2011;738:186.

    Google Scholar 

  84. Sanders RH. MNRAS. 2012;419:L6.

    Google Scholar 

  85. Sanders RH. MNRAS. 2012;422:L21.

    Google Scholar 

  86. Ciotti L, Binney J. MNRAS. 2004;351:285.

    Google Scholar 

  87. Sánchez-Salcedo FJ, Reyes-Iturbide J, Hernandez X. MNRAS. 2006;370:1829.

    Google Scholar 

  88. Cole DR, Dehnen W, Read JI, Wilkinson MI. 2012. arXiv:1205.6327.

    Google Scholar 

  89. Angus GW, Diaferio A. MNRAS. 2009;396:887.

    Google Scholar 

  90. The LS, White SDM. AJ. 1988;95:1642.

    Google Scholar 

  91. Gerbal D, Durret F, Lachieze-Rey M, Lima-Neto G. A&A. 1992;262:395.

    Google Scholar 

  92. Angus GW, Famaey B, Buote DA. MNRAS. 2008;387:1470.

    Google Scholar 

  93. Sanders RH. MNRAS. 2003;342:901.

    Google Scholar 

  94. Vikhlinin A, Kravtsov A, Forman W, et al. ApJ. 2006;640:691.

    Google Scholar 

  95. Zhang Y-Y, Andernach H, Caretta CA, et al. A&A. 2011;526:A105.

    Google Scholar 

  96. Eckmiller HJ, Hudson DS, Reiprich TH. A&A. 2011;535:A105.

    Google Scholar 

  97. Bryan GL, Norman ML. ApJ. 1998;495:80.

    Google Scholar 

  98. Aguirre A, Schaye J, Quataert E. ApJ. 2001;561:550.

    Google Scholar 

  99. Milgrom M. ApJL. 1998;496:L89.

    Google Scholar 

  100. Milgrom M. ApJL. 2002;577:L75.

    Google Scholar 

  101. Milgrom M. New Astron Rev. 2008;51:906.

    Google Scholar 

  102. Clowe D, Bradač M, Gonzalez AH, et al. ApJL. 2006;648:L109.

    Google Scholar 

  103. Bradač M, Allen SW, Treu T, et al. ApJ. 2008;687:959.

    Google Scholar 

  104. Angus GW, Famaey B, Zhao HS. MNRAS. 2006;371:138.

    Google Scholar 

  105. Pireaux S. Class Quantum Gravity. 2004;21:1897.

    Google Scholar 

  106. Pireaux S. Class quantum gravity. 2004;21:4317.

    Google Scholar 

  107. Mahdavi A, Hoekstra H, Babul A, Balam DD, Capak PL. ApJ. 2007;668:806.

    Google Scholar 

  108. Jee MJ, Mahdavi A, Hoekstra H, et al. ApJ. 2012;747:96.

    Google Scholar 

  109. Mastropietro C, Burkert A. MNRAS. 2008;389:967.

    Google Scholar 

  110. Lee J, Komatsu E. ApJ. 2010;718:60.

    Google Scholar 

  111. Angus GW, McGaugh SS. MNRAS. 2008;383:417.

    Google Scholar 

  112. Angus GW, Diaferio A. MNRAS. 2011;417:941.

    Google Scholar 

  113. Kashlinsky A, Atrio-Barandela F, Ebeling H. 2012. arXiv:1202.0717.

    Google Scholar 

  114. Bekenstein JD. 2012. arXiv:1201.2759.

    Google Scholar 

  115. Halle A, Zhao H, Li B. ApJS. 2008;177:1.

    Google Scholar 

  116. Bekenstein JD. Phys Rev D. 2004;70:083509.

    Google Scholar 

  117. Sanders RH. ApJ. 1997;480:492.

    Google Scholar 

  118. Lasky PD, Sotani H, Giannios D. Phys Rev D. 2008;78:104019.

    Google Scholar 

  119. Chiu M-C, Ko C-M, Tian Y. ApJ. 2006;636:565.

    Google Scholar 

  120. Zhao H, Bacon DJ, Taylor AN, Horne K. MNRAS. 2006;368:171.

    Google Scholar 

  121. Shan HY, Feix M, Famaey B, Zhao H. MNRAS. 2008;387:1303.

    Google Scholar 

  122. Ferreras I, Sakellariadou M, Yusaf MF. Phys Rev Lett. 2008;100:031302.

    Google Scholar 

  123. Mavromatos NE, Sakellariadou M, Yusaf MF. Phys Rev D. 2009;79:081301.

    Google Scholar 

  124. Chiu M-C, Ko C-M, Tian Y, Zhao H. Phys Rev D. 2011;83:063523.

    Google Scholar 

  125. Chen D-M, Zhao H. ApJL. 2006;650:L9.

    Google Scholar 

  126. Chen D-M. JCAP. 2008;1:6.

    Google Scholar 

  127. Tian Y, Ko C-M, Chiu M-C. 2012. arXiv:1204.6359.

    Google Scholar 

  128. Ferreras I, Mavromatos N, Sakellariadou M, Furqaan Yusaf M. 2012. arXiv:1205.4880.

    Google Scholar 

  129. Takahashi R, Chiba T. ApJ. 2007;671:45.

    Google Scholar 

  130. Natarajan P, Zhao H. MNRAS. 2008;389:250.

    Google Scholar 

  131. Angus GW, Shan HY, Zhao HS, Famaey B. ApJL. 2007;654:L13.

    Google Scholar 

  132. Feix M, Fedeli C, Bartelmann M. A&A. 2008;480:313.

    Google Scholar 

  133. Ferreira PG, Starkman GD. Science. 2009;326:812.

    Google Scholar 

  134. Tremaine S, Gunn JE. Phys Rev Lett. 1979;42:407.

    Google Scholar 

  135. Kull A, Treumann RA, Böhringer H. ApJL. 1996;466:L1.

    Google Scholar 

  136. Treumann RA, Kull A, Böhringer H. New J Phys. 2000;2:11.

    Google Scholar 

  137. Groom DE. Eur Phys J C. 2000;15:358.

    Google Scholar 

  138. Pointecouteau E, Silk J. MNRAS. 2005;364:654.

    Google Scholar 

  139. McGaugh SS. ApJ. 2004;611:26.

    Google Scholar 

  140. Skordis C, Mota DF, Ferreira PG, Bœhm C. Phys Rev Lett. 2006;96:011301.

    Google Scholar 

  141. Tian L, Hoekstra H, Zhao H. MNRAS. 2009;393:885.

    Google Scholar 

  142. Abazajian KN, Acero MA, Agarwalla SK, et al. 2012. arXiv:1204.5379.

    Google Scholar 

  143. Giunti C, Laveder M. Phys Rev D. 2011;83:053006.

    Google Scholar 

  144. Giunti C, Laveder M. Phys Rev D. 2011;84:093006.

    Google Scholar 

  145. Kuflik E, McDermott SD, Zurek KM. 2012. arXiv:1205.1791.

    Google Scholar 

  146. Nelson AE. Phys Rev D. 2011;84:053001.

    Google Scholar 

  147. Giunti C, Laveder M. Phys Rev D. 2008;77:093002.

    Google Scholar 

  148. Angus GW. MNRAS. 2009;394:527.

    Google Scholar 

  149. Boyanovsky D. Phys Rev D. 2008;78:103505.

    Google Scholar 

  150. Angus GW, Famaey B, Diaferio A. MNRAS. 2010;402:39.

    Google Scholar 

  151. Feix M, Zhao H, Fedeli C, Pestaña JLG, Hoekstra H. Phys Rev D. 2010;82:124003.

    Google Scholar 

  152. Nusser A. MNRAS. 2002;331:909.

    Google Scholar 

  153. Llinares C, Knebe A, Zhao H. MNRAS. 2008;391:1778.

    Google Scholar 

  154. Cen R, Ostriker JP. ApJ. 1992;399:331.

    Google Scholar 

  155. Skordis C. Phys Rev D. 2006;74:103513.

    Google Scholar 

Download references

Acknowledgements

We thank Benoit Famaey and Stacy McGaugh for useful suggestions and for providing us with Figs. 1, 2, 3 and 4. We thank Ana Laura Serra for a careful reading of the manuscript and Luisa Ostorero for enlightening and encouraging discussions. AD gratefully acknowledges partial support form INFN grant PD51 and PRIN-MIUR-2008 grant 2008NR3EBK_003 “Matter-antimatter asymmetry, dark matter and dark energy in the LHC era”. GWA is supported by the Claude Leon Foundation and a University Research Committee Fellowship from the University of Cape Town. This research has made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonaldo Diaferio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diaferio, A., Angus, G. (2016). The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos. In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds) Gravity: Where Do We Stand?. Springer, Cham. https://doi.org/10.1007/978-3-319-20224-2_10

Download citation

Publish with us

Policies and ethics