Skip to main content

Solid Lipid Excipients as Matrix Agents for Sustained Drug Delivery

  • Chapter
  • First Online:
Excipient Applications in Formulation Design and Drug Delivery

Abstract

Lipid excipients are attracting interest from drug developers due to their performance, ease of use, versatility and their potential to generate intellectual property through innovation in drug delivery, particularly in the case of controlled-drug release systems. Many articles have described the use of lipid excipients to develop matrix modified-release dosage forms using a range of processing techniques, therefore a comprehensive review is timely to synthesize and analyze the key information. This chapter focuses on the utility of lipid excipients in solid sustained drug delivery systems with emphasis on the efficiency and robustness of these systems with respect to: (i) the choice of the manufacturing process and its impact on drug release, (ii) the fundamental drug release mechanisms, (iii) resistance of the drug formulation under physiological conditions, and (iv) long term stability. Understanding the functionality of these versatile excipients in formulation is fundamental for the development of highly robust lipid-based sustained-release medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Active pharmaceutical ingredient

DCPD:

Dibasic calcium phosphate dihydrate

GIT:

Gastrointestinal tract

HLB:

Hydrophilic-lipophilic balance

HME:

Hot melt extrusion

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methyl cellulose

MCC:

Microcrystalline cellulose

MFT:

Minimum film forming temperature

NLC:

Nanostructured lipid carrier

PEG:

Polyethylene glycol

PVP:

Poly(vinylpyrrolidone)

SLN:

Solid lipid nanoparticles

SR:

Sustained release

Tg:

Glass-liquid transition temperature

References

  • Aboelwafa AA, Basalious EB (2010) Optimization and in vivo pharmacokinetic study of a novel controlled release venlafaxine hydrochloride three-layer tablet. AAPS PharmSciTech 11:1026–1037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adnan S, Nisar-Ur-Rhaman AS, Khanand SM, Saeed-ul-Hassa S (2010) In vitro comparison of sustained release hydroxypropylmethyl cellulose and lipid-based matrix systems of diltiazem HCl. Pak J Zool 42:515–519

    CAS  Google Scholar 

  • Akiyama Y, Yoshioka M, Horibe H, Hirai S, Kitamori N, Toguchi H (1993) Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. J Control Release 26:1–10

    Article  CAS  Google Scholar 

  • Albertini B, Passerini N, Pattarino F, Rodriguez L (2008) New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. Eur J Pharm Biopharm 69(1):348–357

    Article  CAS  PubMed  Google Scholar 

  • Amaral MH, Lobo JM, Ferreira DC (2001) Effect of hydroxypropyl methylcellulose and hydrogenated castor oil on naproxen release from sustained-release tablets. AAPS PharmSciTech 2:E6

    Article  CAS  PubMed  Google Scholar 

  • Anand O, Yu LX, Conner DP, Davit BM (2011) Dissolution testing for generic drugs: an FDA perspective. AAPS J 13(3):328–335

    Article  PubMed Central  PubMed  Google Scholar 

  • Ayyappan J, Umapathi P, Quine D (2010) Development and evaluation of a directly compressible co-processed multifunction sustained release agent for gliclazide sustained release tablets. Pharm Sci Res 2:394–400

    CAS  Google Scholar 

  • Bakala N’Goma J-C, Amara S, Dridi K, Jannin V, Carriere F (2012) Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv 3(1):105–124

    Article  PubMed  CAS  Google Scholar 

  • Barakat NS, Elbagory IM, Almurshedi AS (2008) Controlled-release carbamazepine granules and tablets comprising lipophilic and hydrophilic matrix components. AAPS PharmSciTech 9(4):1054–1062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodmeier R, Paeratakul O, Chen H, Zhang W (1990) Formation of sustained release wax matrices within hard gelatin capsules in a fluidized bed. Drug Dev Ind Pharm 16:1505–1519

    Article  CAS  Google Scholar 

  • Bonnaire L, Sandra S, Helgason T, Decker EA, Weiss J, McClements DJ (2008) Influence of lipid physical state on the in vitro digestibility of emulsified lipids. J Agric Food Chem 56(10):3791–3797

    Article  CAS  PubMed  Google Scholar 

  • Bowtle W (2000) Lipid formulations for oral drug delivery. Pharm Tech Europe 12(9):20–30

    CAS  Google Scholar 

  • Boyd BJ, Nguyen T-H, Müllertz A (2011) Lipids in oral controlled release drug delivery. In: Wilson CG, Crowley PJ (eds) Controlled release in oral drug delivery. Advances in delivery science and technology. Springer, US, pp 299–327

    Chapter  Google Scholar 

  • Bruguera JL, Lamoise M, Mikler C, Teillaud E (1990) Formulation methods:theophylline prolonged-release micromatrices [Méthodologie de formulation: micromatrices à libération prolongée de théophylline]. Bull Tech Gattefossé 83 33–48

    Google Scholar 

  • Bunjes H, Drechsler M, Koch MH, Westesen K (2001) Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. Pharm Res 18(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Cammack R (2006) Oxford dictionary of biochemistry and molecular biology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cannon JB (2011) Strategies to formulate lipid-based drug delivery systems. Am Pharm Rev 14(4):84–92

    CAS  Google Scholar 

  • Cegla UH (1988) [Long-term therapy over 2 years with ambroxol (Mucosolvan) retard capsules in patients with chronic bronchitis. Results of a double-blind study of 180 patients]. Prax Klin Pneumol 42(9):715–721

    CAS  PubMed  Google Scholar 

  • Cuppok Y, Girard JM, Miolane C, Marchaud D (2012) Synergic effect of two glycerides to increase stability and ethanol resistance of SR matrix tablets. 2005 AAPS annual meeting and exposition

    Google Scholar 

  • Dellamary L, Smith DJ, Bloom A, Bot S, Guo GR, Deshmuk H, Costello M, Bot A (2004) Rational design of solid aerosols for immunoglobulin delivery by modulation of aerodynamic and release characteristics. J Control Release 95(3):489–500

    Article  CAS  PubMed  Google Scholar 

  • DeNigris SJ, Hamosh M, Kasbekar DK, Fink CS, Lee TC, Hamosh P (1985) Secretion of human gastric lipase from dispersed gastric glands. Biochim Biophys Acta 836(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Dennis AB, Farr SJ, Kellaway IW, Taylor G, Davidson R (1990) In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. Int J Pharm 65:85–100

    Article  CAS  Google Scholar 

  • Eldem T, Speiser P, Altorfer H (1991) Polymorphic behavior of sprayed lipid micropellets and its evaluation by differential scanning calorimetry and scanning electron microscopy. Pharm Res 8(2):178–184

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed GM, El-Said Y, Meshali MM, Schwartz JB (1996a) Comparative bioavailability of theophylline from tablets with different sustained release kinetics. STP Pharma Pratiques 6:398–402

    Google Scholar 

  • El-Sayed GM, El-Said Y, Meshali MM, Schwartz JB (1996b) Kinetics of theophylline release from different tablet matrices. STP pharma pratiques 6:390–397

    Google Scholar 

  • El-Shanawany S (1993) Sustained-release of nitrofurantoin from inert wax matrices. J Control Release 26:11–19

    Article  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46(5):839–861

    Article  CAS  PubMed  Google Scholar 

  • Fernandez S, Jannin V, Rodier J-D, Ritter N, Mahler B, Carriere F (2007) Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim Biophys Acta 1771(5):633–640

    Article  CAS  PubMed  Google Scholar 

  • Fernandez S, Rodier J-D, Ritter N, Mahler B, Demarne F, Carriere F, Jannin V (2008) Lipolysis of the semi-solid self-emulsifying excipient Gelucire 44/14 by digestive lipases. Biochim Biophys Acta 1781(8):367–375

    Article  CAS  PubMed  Google Scholar 

  • Fernandez S, Jannin V, Chevrier S, Chavant Y, Demarne F, Carriere F (2013) In vitro digestion of the self-emulsifying lipid excipient Labrasol(®) by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate. Pharm Res 30(12):3077–3087

    Article  CAS  PubMed  Google Scholar 

  • Fetih GN (2010) Formulation and characterization of Gelucire pellets for sustained release of Ibuprofen. Bull Pharm Sci 33:217–224

    CAS  Google Scholar 

  • Fotaki N, Vertzoni M (2010) Biorelevant dissolution methods and their applications in in vitro-in vivo correlations for oral formulations. Open Drug Deliv J 4:2–13

    Article  CAS  Google Scholar 

  • Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7(4):429–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garbacz G, Wedemeyer R-S, Nagel S, Giessmann T, Monnikes H, Wilson CG, Siegmund W, Weitschies W (2008) Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm 70(2):421–428

    Article  CAS  PubMed  Google Scholar 

  • Goodhart FW, McCoy RH, Ninger FC (1974) Release of a water-soluble drug from a wax matrix timed-release tablet. J Pharm Sci 63(11):1748–1751

    Article  CAS  PubMed  Google Scholar 

  • Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Fediuk DJ, Simons FER, Simons KJ (2004) Evaluation and comparison of five matrix excipients for the controlled release of acrivastine and pseudoephedrine. Drug Dev Ind Pharm 30(10):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Gures S, Kleinebudde P (2011) Dissolution from solid lipid extrudates containing release modifiers. Int J Pharm 412(1–2):77–84

    Article  PubMed  CAS  Google Scholar 

  • Gures S, Siepmann F, Siepmann J, Kleinebudde P (2012) Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments. Eur J Pharm Biopharm 80(1):122–129

    Article  PubMed  CAS  Google Scholar 

  • Guse C, Koennings S, Kreye F, Siepmann F, Goepferich A, Siepmann J (2006) Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int J Pharm 314(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Hagemann JW (1988) Thermal behaviour and polymorphism of acylglycerides. In: Garti N, Sato K (eds) Crystallization and polymorphism of fats and fatty acids, vol 31. Marcel Dekker, New York, pp 9–95

    Google Scholar 

  • Hamdani J, Moes AJ, Amighi K (2002) Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int J Pharm 245(1–2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Hariharan M, Wowchuk C, Nkansah P, Gupta VK (2004) Effect of formulation composition on the properties of controlled release tablets prepared by roller compaction. Drug Dev Ind Pharm 30(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Hassan EE, Eshra AG, Nada AH (1995) Formulation of prolonged release lipid micropellets by emulsion congealing: optimization of ketoprofen entrapment and release. Int J Pharm 121:149–155

    Article  CAS  Google Scholar 

  • Hernquist L (1988) Crystal structures of fats and fatty acids. In: Garti N, Sato K (eds) Crystallization and polymorphism of fats and fatty acids, vol 31. Marcel Dekker, New York, pp 97–137

    Google Scholar 

  • Herrmann S, Mohl S, Winter G (2006) Strategies to circumvent polymorphism in sustained release systems based on lipids. 2006 World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology

    Google Scholar 

  • Herrmann S, Winter G, Mohl S, Siepmann F, Siepmann J (2007) Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J Control Release 118(2):161–168

    Article  CAS  PubMed  Google Scholar 

  • Jannin V, Cuppok Y (2013) Hot-melt coating with lipid excipients. Int J Pharm 457(2):480–487

    Article  CAS  PubMed  Google Scholar 

  • Jannin V, Bérard V, Andrès C (2005) Modification of the drug release of ibuprofen by hot-melt coating with mixes of Compritol 888 ATO and non-ionic surfactants. 2005 AAPS Annual Meeting and Exposition

    Google Scholar 

  • Jannin V, Pochard E, Chambin O (2006) Influence of poloxamers on the dissolution performance and stability of controlled-release formulations containing Precirol ATO 5. Int J Pharm 309(1–2):6–15

    Article  CAS  PubMed  Google Scholar 

  • Jannin V, Rosiaux Y, Doucet J (2015) Exploring the possible relationship between the drug release of Compritol®-containing tablets and its polymorph forms using micro X-ray diffraction. J Control Release 197:158–164

    Article  CAS  PubMed  Google Scholar 

  • Jantratid E, Janssen N, Reppas C, Dressman JB (2008) Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 25(7):1663–1676

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • Keen JM, Hughey JR, Bennett RC, McGinity JW (2011) Preparation of hot-melt extruded supersaturating solid dispersions containing glyceryl behenate: effects on processability, supersaturation and rate of release. AAPS 2011 annual meeting and exposition

    Google Scholar 

  • Keen JM, Hughey JR, Bennett RC, Martin C, Cuppok Y, Jannin V, Musakhanian J, Marchaud D, McGinity JW (2012) Melt granulation using a twin screw extruder to obtain lipid granules containing tramadol HCl. AAPS 2012 annual meeting and exposition

    Google Scholar 

  • Khosla R (1987) Gastrointestinal transit of dosage forms. University of Nottimgham, Nottingham

    Google Scholar 

  • Krause JA (2008) Novel pediatric formulations for the drug sodium benzoate. Heinrich-Heine Universität, Düsseldorf

    Google Scholar 

  • Krause JD, Breitkreutz JPD (2010) Lipid pellets with enhanced taste-masking. Europe Patent

    Google Scholar 

  • Kreye F, Siepmann F, Siepmann J (2011a) Drug release mechanisms of compressed lipid implants. Int J Pharm 404(1–2):27–35

    Article  CAS  PubMed  Google Scholar 

  • Kreye F, Siepmann F, Willart JF, Descamps M, Siepmann J (2011b) Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm 78(3):394–400

    Article  CAS  PubMed  Google Scholar 

  • Kreye F, Siepmann F, Zimmer A, Willart JF, Descamps M, Siepmann J (2011c) Controlled release implants based on cast lipid blends. Eur J Pharm Sci 43(1–2):78–83

    Article  CAS  PubMed  Google Scholar 

  • Kühnemund L, Marchaud D, Dauphin E, Girard JM, Miolane C, Cuppok Y, Garbacz G, Klein S (2012) Determining drug release from Compritol 888 ATO matrix formulations. 2012 world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology

    Google Scholar 

  • Li LC, Peck GE (1990) The effect of agglomeration methods on the micromeritic properties of a maltodextrin product, Maltrin 150 T. Drug Dev Ind Pharm 16:491–503

    Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Zhang F, McGinity JW (2001) Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm 52(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Lo JB, Appel LE, Herbig SM, McCray SB, Thombre AG (2009) Formulation design and pharmaceutical development of a novel controlled release form of azithromycin for single-dose therapy. Drug Dev Ind Pharm 35(12):1522–1529

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Garcia CA, Mikos AG (1999) In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 46(2):236–244

    Article  CAS  PubMed  Google Scholar 

  • Marques M (2004) Dissolution media simulating fasted and fed states. Dissolut Technol 11:16–19

    Article  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Article  CAS  PubMed  Google Scholar 

  • Mehuys E, Vervaet C, Gielen I, Van Bree H, Remon JP (2004) In vitro and in vivo evaluation of a matrix-in-cylinder system for sustained drug delivery. J Control Release 96(2):261–271

    Article  CAS  PubMed  Google Scholar 

  • Meshali MM, El-Sayed GM, Abd El-Aleem HM, El-Said Y (1995) Optimization of theophylline release from tablets containing Compritol. STP Pharma Sci 5:429–434

    CAS  Google Scholar 

  • Meyer RJ, Hussain AS (2005) Awareness topic: mitigating the risks of ethanol induced dose dumping from oral sustained/controlled release dosage forms (FDA ACPS meeting). http://www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4187B1_01_08-Alcohol-Induced.pdf. Accessed 30 Oct 2014

  • Miller TA, York P (1988) Pharmaceutical tablet lubrication. Int J Pharm 41(1–2):1–19

    Article  CAS  Google Scholar 

  • Mohamed FA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR (2013) The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Dev Ind Pharm 39(8):1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Mohl S, Winter G (2004) Continuous release of rh-interferon alpha-2a from triglyceride matrices. J Control Release 97(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Nanjwade BK, Mhase SR, Manvi FV (2011a) Formulation of extended-release metformin hydrochloride matrix tablets. Trop J Pharm Res 10:375–383

    Article  CAS  Google Scholar 

  • Nanjwade BK, Patel DJ, Udhani RA, Manvi FV (2011b) Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm 79(4):705–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolaides E, Symillides M, Dressman JB, Reppas C (2001) Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm Res 18(3):380–388

    Article  CAS  PubMed  Google Scholar 

  • Özyazici M, Gokce EH, Ertan G (2006) Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm 63(3):331–339

    Article  PubMed  CAS  Google Scholar 

  • Pallagi E, Vass K, Pintye-Hodi K, Kasa P, Falkay G, Eros I, Szabo-Revesz P (2004) Iron(II) sulfate release from drop-formed lipophilic matrices developed by special hot-melt technology. Eur J Pharm Biopharm 57(2):287–294

    Article  CAS  PubMed  Google Scholar 

  • Parab PV, Oh CK, Ritschel WA (1986) Sustained release from precirol (glycerol palmito-stearate) matrix. Effect of mannitol and hydroxypropyl methylcellulose on the release of theophylline. Drug Dev Ind Pharm 12:1309–1327

    Article  CAS  Google Scholar 

  • Patel V, Patel NM (2008) Controlled release dipyridamole from floating matrices prepared using glyceryl behenate. Drug Deliv Technol 8:54–59

    Google Scholar 

  • Patel DM, Patel NM, Patel VF, Bhatt DA (2007) Floating granules of ranitidine hydrochloride-gelucire 43/01: formulation optimization using factorial design. AAPS PharmSciTech 8(2):Article 30

    Google Scholar 

  • Patere SN, Desai NS, Jain AS, Kadam PP, Thatte UM, Gogtay N, Kapadia CJ, Farah N, Nagarsenker MS (2013) Compritol®888 ATO a lipid excipient for sustained release of highly water soluble active: formulation, scale-up and IVIVC study. Curr Drug Deliv 10(5):548–556

    Article  CAS  PubMed  Google Scholar 

  • Perge L, Robitzer M, Guillemot C, Devoisselle J-M, Quignard F, Legrand P (2012) New solid lipid microparticles for controlled ibuprofen release: formulation and characterization study. Int J Pharm 422(1–2):59–67

    Article  CAS  PubMed  Google Scholar 

  • Pivette P, Faivre V, Mancini L, Gueutin C, Daste G, Ollivon M, Lesieur S (2012) Controlled release of a highly hydrophilic API from lipid microspheres obtained by prilling: analysis of drug and water diffusion processes with X-ray-based methods. J Control Release 158(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Porter CJH, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW, Porter CJ (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 60(6):625–637

    Article  CAS  PubMed  Google Scholar 

  • Priyanka K, Sathali AAH (2012) Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J Young Pharm 4(3):129–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pulcini L, Roberts M, Mostafa S, Cuppok Y (2012) Sustained release of diclofenac sodium from wet granulated Compritol 888 ATO matrix tablets. Controlled release society 2012 annual meeting

    Google Scholar 

  • Quadir MA, Rahman MS, Karim MZ, Akter S, Awkat MTB, Reza MS (2003) Evaluation of hydrophobic materials as matrices for controlled-release drug delivery. Pak J Pharm Sci 16(2):17–28

    CAS  PubMed  Google Scholar 

  • Rao M, Ranpise A, Borate S, Thanki K (2009a) Mechanistic evaluation of the effect of sintering on Compritol 888 ATO matrices. AAPS PharmSciTech 10(2):355–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao MRP, Ranpise AA, Thanki KC, Borate SG, Parikh GN (2009b) Effect of processing and sintering on controlled release wax matrix tablets of ketorolac tromethamine. Indian J Pharm Sci 71(5):538–544

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratsimbazafy V, Bourret VE, Brossard C (1997) Influence of the manufacturing process on the release of poxyphylline from lipid matrices. Pharm Unserer Zeit 52:863–866

    CAS  Google Scholar 

  • Rawat MK, Jain A, Singh S (2011) Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci 100(6):2366–2378

    Article  CAS  PubMed  Google Scholar 

  • Reithmeier H, Herrmann J, Gopferich A (2001a) Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int J Pharm 218(1–2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Reithmeier H, Herrmann J, Gopferich A (2001b) Lipid microparticles as a parenteral controlled release device for peptides. J Control Release 73(2–3):339–350

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Kleinebudde P (2007) Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm 67(2):440–448

    Article  CAS  PubMed  Google Scholar 

  • Roberts M, Vellucci D, Mostafa S, Miolane C, Marchaud D (2012) Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets. Drug Dev Ind Pharm 38(9):1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez L, Passerini N, Cavallari C, Cini M, Sancin P, Fini A (1999) Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. Int J Pharm 183(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Rosiaux Y, Girard JM, Desvignes F, Miolane C, Marchaud D (2014a) Compritol® 888 ATO vs Precirol® ATO 5 in hot melt extrusion: investigation of operating window limits (Abstract no. AM-14-2431). Paper presented at the 2014 AAPS national biotechnology conference, San Diago

    Google Scholar 

  • Rosiaux Y, Girard JM, Desvignes F, Miolane C, Marchaud D (2014b) Ethanol resistant extended release matrix tablets with Compritol® 888 ATO (Abstract no. AM-14-2420). Paper presented at the 2014 AAPS national biotechnology conference, San Diago

    Google Scholar 

  • Sakamoto T, Takeda T, Suzuki Y (1991) Sustained-release proeparations and the process thereof. United States Patent

    Google Scholar 

  • Saraiya D, Bolton S (1990) The use of precirol to prepare sustained release tablets of theophylline and quinidine gluconate. Drug Dev Ind Pharm 16:1963–1969

    Article  CAS  Google Scholar 

  • Sato K (2001) Crystallization behaviour of fats and lipids—a review. Chem Eng Sci 56(7):2255–2265

    Article  CAS  Google Scholar 

  • Savolainen M, Khoo C, Glad H, Dahlqvist C, Juppo AM (2002) Evaluation of controlled-release polar lipid microparticles. Int J Pharm 244(1–2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Savolainen M, Herder J, Khoo C, Lovqvist K, Dahlqvist C, Glad H, Juppo AM (2003) Evaluation of polar lipid-hydrophilic polymer microparticles. Int J Pharm 262(1–2):47–62

    Article  CAS  PubMed  Google Scholar 

  • Sax GL (2012) Twin-screw extruded lipid implants for controlled protein drug delivery. Ludwig Maximilian’s University of Munich, Munich

    Google Scholar 

  • Schaefer T (1996) Melt agglomeration with polyethylene glycols in high shear mixers [Dr Pharm. Thesis]. Copenhagen

    Google Scholar 

  • Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, Weitschies W (2005) Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22(10):971–979

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HG, Dakkuri A, DeLuca PP (1978) Sustained release from inert wax matrixes I: drug-wax combinations. J Pharm Sci 67(3):350–353

    Article  CAS  PubMed  Google Scholar 

  • Schulze S, Winter G (2009) Lipid extrudates as novel sustained release systems for pharmaceutical proteins. J Control Release 134(3):177–185

    Article  CAS  PubMed  Google Scholar 

  • Schwab M, Kessler B, Wolf E, Jordan G, Mohl S, Winter G (2008) Correlation of in vivo and in vitro release data for rh-INFalpha lipid implants. Eur J Pharm Biopharm 70(2):690–694

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JB, Simonelli AP, Higuchi WI (1968a) Drug release from wax matrices. I. Analysis of data with first-order kinetics and with the diffusion-controlled model. J Pharm Sci 57(2):274–277

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JB, Simonelli AP, Higuchi WI (1968b) Drug release from wax matrices. II. Application of a mixture theory to the suflanilamide–wax system. J Pharm Sci 57(2):278–282

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418(1):6–12

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2011) Mathematical modeling of drug release from lipid dosage forms. Int J Pharm 418(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362

    Article  CAS  PubMed  Google Scholar 

  • Siepmann F, Winter G, Siepmann F (2008) A novel mathematical model quantifying drug release from lipid implants. J Control Release 128:233–240

    Article  CAS  PubMed  Google Scholar 

  • Silva AC, Santos D, Ferreira DC, Souto EB (2006) Oral delivery of drugs by means of lipid nanoparticles. 2006 internation workshop on bioencapsulation

    Google Scholar 

  • Singh RP, Ramarao P (2013) Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. Toxicol Sci 136(1):131–143

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Kumar P, Rani N, Rana V (2009) Investigation of different lipid based materials as matrices designed to control the release of a hydrophobic drug. Int J Pharm Sci Drug Res 1(3):158–163

    CAS  Google Scholar 

  • Speiser PPD (1990) Lipid nano pellets as drug carriers for oral administration. Europe Patent

    Google Scholar 

  • Thies R, Kleinebudde P (2000) Melt pelletisation of a hygroscopic drug in a high shear mixer. Part 2. Mutual compensation of influence variables. Eur J Pharm Sci 10(2):103–110

    Article  CAS  PubMed  Google Scholar 

  • Treanor G, Roberts M, Mostafa S, Miolane C (2010) Diluent effects on drug release from sustained-release Compritol 888 ATO tablets. J Pharm Pharmacol 62:1419–1420

    CAS  Google Scholar 

  • Uner M, Celebi B (2012) Design of hydralazine hydrochloride matrix tablets based on various polymers and lipids. Ind J Pharm Edu Res 46:75–87

    Google Scholar 

  • Uner M, Gonullu U, Yener G, Altinkurt T (2005) A new approach for preparing a controlled release ketoprofen tablets by using beeswax. Farmaco 60(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • Uronnachi EM, Ogbonna JDN, Kenechukwu FC, Attama AA, Okore VC (2013) Formulation and in vitro/in vivo evaluation of zidovudine contained in solidified reverse micellar delivery system of immune compromised rats. JAPS 3:31–35

    Google Scholar 

  • Velghe C, Rosiaux Y, Marchaud D, Siepmann F (2014) In silico simulation of niacin release from lipid tablets: theoretical predictions and independent experiments. J Control Release 175:63–71

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh GM, Palepu NR (2002) Blending lithium carbonate, hydrophobic waxy material, dissolution rate stabilizer and optional pharmaceutical excipients, formulating resulting blend into controlled release solid dosage forms. United States Patent

    Google Scholar 

  • Vithani K, Maniruzzaman M, Slipper IJ, Mostafa S, Miolane C, Cuppok Y, Marchaud D, Douroumis D (2013) Sustained release solid lipid matrices processed by hot-melt extrusion (HME). Colloids Surf B Biointerfaces 110:403–410

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Gan Y, Zhang XX (2011) Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test. Acta Pharmacol Sin 32(10):1294–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner AL (2001) Lipids as excipients in pharmaceutical dosage forms. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, 2nd edn. Marcel Dekker, Inc, New York, pp 1659–1673

    Google Scholar 

  • Windbergs M, Strachan CJ, Kleinebudde P (2009) Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. Eur J Pharm Biopharm 71(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Windbergs M, Gueres S, Strachan CJ, Kleinebudde P (2010) Two-step solid lipid extrusion as a process to modify dissolution behavior. AAPS PharmSciTech 11(1):2–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witzleb R, Mullertz A, Kanikanti VR, Hamann HJ, Kleinebudde P (2012) Dissolution of solid lipid extrudates in biorelevant media. Int J Pharm 422(1–2):116–124

    Article  CAS  PubMed  Google Scholar 

  • Yoshino H, Kobayashi M, Samejima M (1982) Influence of the liquid phase coexisting in fatty suppository bases on the polymorphic transition rate. Chem Pharm Bull (Tokyo) 30(8):2941–2950

    Article  CAS  Google Scholar 

  • Zhang YE, Schwartz JB (2000) Effect of diluents on tablet integrity and controlled drug release. Drug Dev Ind Pharm 26(7):761–765

    Article  CAS  PubMed  Google Scholar 

  • Zhang YE, Schwartz JB (2003) Melt granulation and heat treatment for wax matrix-controlled drug release. Drug Dev Ind Pharm 29(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Zhang YE, Tchao R, Schwartz JB (2001) Effect of processing methods and heat treatment on the formation of wax matrix tablets for sustained drug release. Pharm Dev Technol 6(2):131–144

    Article  CAS  PubMed  Google Scholar 

Download references

Declaration of interests

All authors are employed by Gattefosse SAS, the company that produces and commercializes Compritol® 888 ATO, Precirol® ATO 5 and the Gelucire® product brand. Editorial assistance for this manuscript, funded by Gattefosse SAS, was provided by Margaret Haugh, MediCom Consult.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Rosiaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosiaux, Y., Jannin, V., Hughes, S., Marchaud, D. (2015). Solid Lipid Excipients as Matrix Agents for Sustained Drug Delivery. In: Narang, A., Boddu, S. (eds) Excipient Applications in Formulation Design and Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-20206-8_9

Download citation

Publish with us

Policies and ethics