Skip to main content

Reactive Impurities in Excipients

  • Chapter
  • First Online:

Abstract

Reactive impurities in pharmaceutical excipients can affect drug product instability, leading to decreased product performance, loss in potency, and/or formation of potentially toxic degradants. The levels of reactive impurities in excipients may vary between lots and vendors. Screening of excipients for these impurities and a thorough understanding of their potential interaction with drug candidates during early formulation development can ensure robust drug product development. This chapter identifies the type and concentration of potentially reactive impurities in commonly used excipients. The excipient impurities are categorized into six major classes: reducing sugars, aldehydes, peroxides, metals, nitrate/nitrite, and organic acids. The sources/generation of these impurities, analytical methods for their detection and quantitation, stability of these impurities upon storage and processing, and their potential reactions with drug candidates are discussed. Specific examples of drug–excipient impurity interaction are presented as illustrative case studies. Mitigation strategies and corrective measures are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIBN:

Azobisisobutyronitrile

API:

Active pharmaceutical ingredient

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

cPVP:

Crospovidone

CTA:

Chromotropic acid

DNPH:

2, 4-dinitrophenylhydrazine

EDTA:

Ethylenediamine tetraacetic acid

EU:

European Pharmacopeia

FOX:

Ferrous oxidation-xylenol orange

GC:

Gas chromatography

HCTZ:

Hydrochlorothiazide

HMF:

5-hydroxymethyl-2-furfuraldehyde

HPLC:

High performance liquid chromatography

ICP-AES:

Inductively coupled plasma: atomic emission spectroscopy

HPO:

Hydroperoxide

MCC:

Microcrystalline cellulose

MS:

Mass spectrometry

NaCMC:

Sodium carboxymethyl cellulose

NFV:

N-formylvarenicline

NMV:

N-methylvarenicline

NOC:

N-nitroso compounds

PFBHA:

O-2,3,4,5,6-(penta fluorobenzyl) hydroxylamine hydrochloride

PEG:

Polyethylene glycol

ppm:

Parts per million

PVA:

Polyvinyl alcohol

PVP:

Poly(vinyl pyrrolidone)

RH:

Relative humidity

TPP:

Triphenylphosphine

TPPO:

Triphenylphosphine oxide

USP:

United States Pharmacopeia

References

  • Akers M (1982) Antioxidants in pharmaceutical products. J Parenter Sci Technol 36(5):222–228

    CAS  PubMed  Google Scholar 

  • Al-Nimry SS, Assaf SM, Ibrahim MJ, Najib NM (1997) Adsorption of ketotifen onto some pharmaceutical excipients. Int J Pharm 149:115–121

    Article  CAS  Google Scholar 

  • Aly SAS, Megwa SA (1987) Drug excipient interaction: effect of adsorption of oxytetracycline hydrochloride by some tablet excipients on the physiological availability of the tablets. STP Pharma 3:652–657

    CAS  Google Scholar 

  • Ashraf-Khorassani M, Taylor LT, Waterman KC, Narayan P, Brannegan DR, Reid GL (2005) Purification of pharmaceutical excipients with supercritical fluid extraction. Pharm Dev Technol 10:507–516

    Article  CAS  PubMed  Google Scholar 

  • Badawy SIF (2001) Effect of salt formation on chemical stability of an ester prodrug of a glycoprotein IIb/IIIa receptor antagonist in solid dosage forms. Int J Pharm 223:81–87

    Article  CAS  PubMed  Google Scholar 

  • Badawy SIF, Williams RC, Gilbert D (1999) Chemical stability of an ester prodrug of a IIb/IIIa antagonist in solid dosage forms. J Pharm Sci 88:428–433

    Article  CAS  PubMed  Google Scholar 

  • Badawy SI, Gawronski AJ, Alvarez FJ (2001) Application of sorption—desorption moisture transfer modeling to the study of chemical stability of a moisture sensitive drug product in different packaging configurations. Int J Pharm 223:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bahador K, Montazerozohori M, Habibi MH (2005) Urea- hydrogen peroxide (UHP) oxidation of thiols to the corresponding disulfides promoted by maleic anhydride as mediator. Molecules 10(10):1358–1363

    Article  Google Scholar 

  • Brambilla G1, Martelli A (2007) Genotoxic and carcinogenic risk to humans of drug-nitrite interaction products. Mutat Res 635(1):17–52

    Article  CAS  PubMed  Google Scholar 

  • Bekers O, Beijnen JH, Vis BJ, Suenaga A, Otagiri M, Bult A, Underberg WJM (1991a) Effect of cyclodextrin complexation on the chemical stability of doxorubicin and daunorubicin in aqueous solutions. Int J Pharm 72:123–130

    Article  CAS  Google Scholar 

  • Bisug SM, Huang WT (1972) Interaction of dextroamphetamine sulfate with spray-dried lactose. J Pharm Sci 61:1770–1775

    Article  Google Scholar 

  • Bottex B, Dorne JL, Carlander D, Benford D, Przyrembel H, Heppner C, Kleiner J, Cockburn A (2008) Risk-benefit health assessment of food—food fortification and nitrate in vegetables. Trends Food Sci Technol 19:S113–S119

    Article  Google Scholar 

  • Brambilla G, Martelli A (2007) Genotoxic and carcinogenic risk to humans of drug-nitrite interaction products. Mutat Res 635:17–52

    Article  CAS  PubMed  Google Scholar 

  • Brambilla G, Martelli A (2009) Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res 681(2–3):209–229

    Article  CAS  PubMed  Google Scholar 

  • Brownley CA Jr, Lachman L (1963) Preliminary report on the comparative stability of certified colorants with lactose in aqueous solutions. J Pharm Sci 52(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Brownley CA Jr, Lachman L (1964) Browning of spray-processed lactose. J Pharm Sci 53(4):452–454

    Article  CAS  PubMed  Google Scholar 

  • Buhler V (2008) Kollidon: polyvinylpyrrolidone excipients for the pharmaceuticals. Springer-Verlag Berlin Heidelberg, Germany

    Google Scholar 

  • Buhler V, Filges U, Schneider T (2000) Stabilized polyvinylpyrrolidone formulation, in BASF A.G., Germany. WO, p 17

    Google Scholar 

  • Chen Y, Li Y (2003) A new model for predicting moisture uptake by packaged solid pharmaceuticals. Int J Pharm 255:217–225

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Stowell JG, Morris KR, Byrn SR (2010) Quantitative study of solid-state acid-base reactions between polymorphs of flufenamic acid and magnesium oxide using X-ray powder diffraction. J Pharm Biomed Anal 51:866–874

    Article  CAS  PubMed  Google Scholar 

  • Chien YW, Van Nostrand P, Hurwitz AR, Shami EG (1981) Drug-disintegrant interactions: binding of oxymorphone derivatives. J Pharm Sci 70:709–710

    Article  CAS  PubMed  Google Scholar 

  • Cory W, Field K, Wu-Linhares D (2004) Is it the method or the process—separating the causes of low recovery. Drug Dev Ind Pharm 30:891–899

    Article  CAS  PubMed  Google Scholar 

  • Del Barrio MA, Hu J, Zhou P, Cauchon N (2006) Simultaneous determination of formic acid and formaldehyde in pharmaceutical excipients using headspace GC/MS. J Pharm Biomed Anal 41:738–743

    Article  CAS  PubMed  Google Scholar 

  • Delonca H, Joachim J, Joachim G, Cantos A (1975) Wet granulation of acetylsalicylic acid. Effect of pH and stabilization agents. Farmaco Ed Prat 30:89–97

    CAS  Google Scholar 

  • Desai DS, Rubitski BA, Bergum JS, Varia SA (1994) Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int J Pharm 110:257–265

    Article  CAS  Google Scholar 

  • Desai D, Rao VM, Guo H, Li D, Stein D, Hu F, Kiesnowski C (2012) An active film-coating approach to enhance chemical stability of a potent drug molecule. Pharm Dev Technol 17: 227–235.

    Google Scholar 

  • Dubost DC, Kaufman MJ, Zimmerman JA, Bogusky MJ, Coddington AB, Pitzenberger SM (1996) Characterization of a solid state reaction product from a lyophilized formulation of a cyclic heptapeptide. A novel example of an excipient-induced oxidation. Pharm Res 13(12):1811–1184

    Article  CAS  PubMed  Google Scholar 

  • Duvall RN, Koshy KT, Pyles JW (1965) Comparison of reactivity of amphetamine, methamphetamine, and dimethylamphetamine with lactose and related compounds. J Pharm Sci 54(4):607–611

    Article  CAS  PubMed  Google Scholar 

  • Eisenbrand G, Bozler G, Nicolai HV (1990) The significance of N-nitrosation of drugs (drug development and evaluation). Gustav Fisher, Stuttgart

    Google Scholar 

  • Fereira PJ, Desjardin MA, Rohloff CM, Berry SA, Zlatkova-Karaslavova ES (2005) Non-aqueous formulations containing biodegradable polymers and methionine and solvents for removing peroxides and reducing the oxidative degradation of drugs. Durect Corp., USA, p 36, Cont -in-part of US Ser No. 814,826

    Google Scholar 

  • Freed AL, Strohmeyer HE, Mahjour M, Sadineni V, Reid DL, Kingsmill CA (2008) pH control of nucleophilic/electrophilic oxidation. Int J Pharm 357(1–2):180–188

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama S, Kihara N, Naksashima K, Morokoshi N, Koda S, Yasuda T (1994) Mechanism of optical isomerization of (S)-N-[1-(2-fluorophenyl)-3,4,6,7-tetrahydro-4-oxopyrrolo[3,2,1-jk][1,4]-benzodiazepine-3-yl]-1H-indole-2-carboxamide (FK480) in soft capsules containing polyethylene glycol 400 and glycerol. Pharm Res 11:1704–1706

    Article  CAS  PubMed  Google Scholar 

  • Gannett P, Hailu S (2001) In vitro reaction of formaldehyde with fenfluramine: conversion to N-methyl fenfluramine. J Anal Toxicol 25:88–92

    Article  CAS  PubMed  Google Scholar 

  • George RC, Barbuch RJ, Huber EW, Regg BT (1994) Investigation into the yellowing on aging of sabril tablet cores. Drug Dev Ind Pharm 20:3023–3032

    Article  CAS  Google Scholar 

  • Glastrup J (1996) Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: tetraethylene glycol. Polym Degrad Stab 52:217–222

    Article  CAS  Google Scholar 

  • Gold TB, Smith SL, Digenis GA (1996) Studies on the influence of ph and pancreatin on 13C-formaldehyde-induced gelatin cross-links using nuclear magnetic resonance. Pharm Dev Technol 1(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Strickley RG, Chi LH, Chowhan ZT (1990) Drug-excipient incompatibility studies of the dipeptide angiotensin-converting enzyme inhibitor, moexipril hydrochloride: dry powder vs wet granulation. Pharm Res 7:379–383

    Article  CAS  PubMed  Google Scholar 

  • Guttman DE (1962) Complex formation influence on reaction rate I. Effect of caffeine on riboflavin base-catalyzed degradation. J Am Pharm Assoc 51:1162–1166

    CAS  Google Scholar 

  • Guy A (2009) Cellulose, microcrystalline. In:Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients, 6th edn. London Pharmaceutical Press, UK, pp 129–133

    Google Scholar 

  • Hamburger R, Azaz E, Donbro M (1975) Autoxidation of polyoxyethylenic nonionic surfactants and polyethylene glycols. Pharm Acta Helv 50:10–17

    CAS  PubMed  Google Scholar 

  • Harmon PA, Wuelfing WP, Harman AB, Givand JC, Shelukar SD, Reed RA (2004) Excipient mediated oxidation by organoperoxides. American Association of Pharmaceutical Scientists, AAPS, Baltimore

    Google Scholar 

  • Hartauer K, Gordon A, Baertschi S, Ross J, Luke W, Pearson N, Richard E, Tingle C, Tsang P, Wiens R (2000) Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: identification and control of an oxidative degradation product. Pharm Dev Technol 5(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Lachman L (1995) Inhibition of hydrolysis of esters in solution by formation of complexes I. Stabilization of benzocaine with caffeine. J Am Pharm Assoc 44:521–526

    Article  Google Scholar 

  • Hirayama F, Kurihara M, Uekama K (1987) Improvement of chemical instability of prostacyclin in aqueous solution by complexation with methylated cyclodextrins. Int J Pharm 35:193–199

    Article  CAS  Google Scholar 

  • Hodge JE (1966) The Amadori rearrangement. Adv Carbohydr Chem 10:169–205

    Google Scholar 

  • Hoffmann E, Herrle K (1973) U.S. Patent 3,759,880

    Google Scholar 

  • Hovorka SW, Schoneich C (2001) Oxidative degradation of pharmaceuticals: theory, mechanisms and inhibition. J Pharm Sci 90(3):253–269

    Article  CAS  PubMed  Google Scholar 

  • Hoydonckx HE, VanRhijn WM, VanRhijn W, Devos DE, Jacobs PA, Derivatives F (2007) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007

    Google Scholar 

  • Huang T, Garceau ME, Gao P (2003) Liquid chromatographic determination of residual hydrogen peroxide in pharmaceutical excipients using platinum and wired enzyme electrodes. J Pharm Biomed Anal 31:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Wu Y, Dali M (2007) Determination of formaldehyde and glucose in pharmaceutical excipients by HPLC with pre-column derivatization. Poster presentation, HPLC Conference, San Francisco, CA

    Google Scholar 

  • Janicki CA, Almond HR (1974) Reaction of haloperidol with 5-(hydroxymethyl)-2-furfuraldehyde, an impurity in anhydrous lactose. J Pharm Sci 63:41–43

    Article  CAS  PubMed  Google Scholar 

  • Katdare A, Chaubal M (eds) (2006) Excipient development for pharmaceutical, biotechnology, and drug delivery systems. Informa Healthcare USA, Inc., New York, p 100

    Book  Google Scholar 

  • Kaufman MJ (1990) Applications of oxygen polarography to drug stability testing and formulation development: solution-phase oxidation of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharm Res 7:289–292

    Article  CAS  PubMed  Google Scholar 

  • Kothari S, Paruchuri S, Rao VM, Desai D (2006) Peroxide scavenging property of croscarmellose sodium and its potential to reduce N-oxidation of piperazine ring containing compounds. AAPS Poster, San Antonio

    Google Scholar 

  • Kumar V, Kalonia S et al (2006) Removal of peroxides in polyethylene glycols by vacuum drying: implications in the stability of biotech and pharmaceutical formulations. AAPS PharmSciTech 7:62

    Article  PubMed  Google Scholar 

  • Lachman L, Higuchi T (1957) Inhibition of hydrolysis of esters in solution by formation of complexes I. Stabilization of tetracaine with caffeine. J Am Pharm Assoc 46:32–36

    Article  CAS  Google Scholar 

  • Lachman L, Ravin LJ, Higuchi T (1956) Inhibition of hydrolysis of esters in solution by formation of complexes II. Stabilization of procaine with caffeine. J Am Pharm Assoc 45:290–295

    Article  CAS  Google Scholar 

  • Lessen T, Da-Chuan Z (1996) Interactions between drug substances and excipients. 1. Fluoresence and HPLC studies of triazolophtalazine derivatives from hydralazine hydrochloride and starch. J Pharm Sci 85:326–329

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jacobus LK, Wuelfing WP, Golden M, Martin GP, Reed RA (2006) Detection and quantification of low-molecular-weight aldehydes in pharmaceutical excipients by headspace gas chromatography. J Chromatogr A 1104:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate nitrite nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    Article  CAS  PubMed  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “Autoxidation” reactions. Free Radic Biol Med 8(1):95–108

    Article  CAS  PubMed  Google Scholar 

  • Moreton C (2010) Functionality and performance of excipients in a quality-by-design world: part IV. Am Pharm Rev 18–21 http://www.finnbrit.com/SubPages/Background/PDF%20Files/QbD%20APR_ExcipientSupplement%202010.pdf

  • Nakamura T, Maeda H (1991) A Simple assay for lipid hydroperoxides based on triphenylphosphine oxidation and high-performance liquid chromatography. Lipids 26:765–768

    Article  CAS  Google Scholar 

  • Narang AS, Rao VM, Raghavan K (2009) Excipient compatibility. In: Qiu Y, Chen Y, Zhang GZ, Liu L, Porter W (eds) Developing solid oral dosage forms: pharmaceutical theory and practice. Elsevier, Burlington, pp 125–146

    Chapter  Google Scholar 

  • Narang A, Lin J, Varia S, Badawy S (2010a) Modeling drug degradation in a tablet, AAPS Annual Meeting, New Orleans, LA

    Google Scholar 

  • Narang AS, Rao VM, Farrell T, Ferrizzi D, Castoro J, Corredor C, Jain N, Varia SA, Desai DD (2010b) Stability implications of prolonged storage of PVA and PEG-based coating suspension, AAPS poster presentation, New Orleans, LA

    Google Scholar 

  • Nassar MN, Nesarikar VN, Lozano R, Parker WL, Huang Y, Palaniswamy V, Xu W, Khaselev N (2004) Influence of formaldehyde impurity in polysorbate 80 and PEG 300 on the stability of a parenteral formulation of BMS-204352: identification and control of the degradation product. Pharm Dev Technol 9(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Nieuwmeyer F, van der Voort Maarschalk K, Vromans H (2008) Lactose contaminant as steroid degradation enhancer. Pharm Res 25(11):2666–2672

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa M, Fuji K (1991) Effect of autoxidation of hydrogenated castor oil containing 60 oxyethylene groups on degradation of miconazole. Chem Pharm Bull 39:2408–2411

    Article  CAS  Google Scholar 

  • Njoroge FG, Monnier VM (1989) The chemistry of the Maillard reaction under physiological conditions: a review. Prog Clin Biol Res 304:85–107

    CAS  PubMed  Google Scholar 

  • Oh IJ, Song HM, Hyun M, Lee KC (1994) Effect of 2-hydroxypropyl-beta- cyclodextrin on the stability of prostaglandin E2 in solution. Int J Pharm 106:135–140

    Article  CAS  Google Scholar 

  • Ohyashiki T, Kadoya A, Kushida K (2002) The role of Fe3+ on Fe2+—dependent lipid peroxidation in phospholipid liposomes. Chem Pharm Bull 50(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Pirinccioglu N, Williams A (1998) Studies of reactions within molecular complexes: alkaline hydrolysis of substituted phenyl benzoates in the presence of xanthines. J Chem Society, Perkin Trans 2: Phys Org Chem 1:37–40

    Article  Google Scholar 

  • Polizzi MA, Singhal D, Colvin J (2008) Mechanoradical-induced degradation in a pharmaceutical blend during high-shear processing. Pharm Dev Technol 13:457–462

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Stowell JG, Cao W, Morris KR, Byrn SR, Carvajal MT (2005) Effect of milling and compression on the solid-state Maillard reaction. J Pharm Sci 94:2568–2580

    Article  CAS  PubMed  Google Scholar 

  • Reed RA, Harmon P, Manas D, Wasylaschuk W, Galli C, Biddell R, Bergquist PA, Hunke W, Templeton AC (2003) The role of excipients and package components in the photostability of liquid formulations. PDA J Pharm Sci Technol 57:351–368

    CAS  PubMed  Google Scholar 

  • Rohrs BR, Thamann TJ, Gao P, Stelzer DJ, Bergren MS, Chao RS (1999) Tablet dissolution affected by a moisture mediated solid-state interaction between drug and disintegrant. Pharm Res 16:1850–1856

    Article  CAS  PubMed  Google Scholar 

  • Sakharov AM, Mazaletskaya LI, Skibida IP (2001) Catalytic oxidative deformylation of polyethylene glycols with the participation of molecular oxygen. Kinet Catal 42:662–668

    Article  CAS  Google Scholar 

  • Sims JL, Carreira JA, Carrier DJ, Crabtree SR, Easton L, Hancock SA, Simcox CE (2003) A new approach to accelerated drug-excipient compatibility testing. Pharm Dev Technol 8(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Tallon MA, Malawer EG, Machnicki NI, Brush PJ, Wu CS, Cullen JP (2008) The effect of crosslinker structure upon the rate of hydroperoxide formation in dried, crosslinked poly(vinylpyrrolidone). J Appl Polym Sci 107:2776–2785

    Article  CAS  Google Scholar 

  • Taylor N (2010) Control excipient reactivity with packaging and aluminum lakes. In: Product news, ingredients, rxcipients, and raw Materials. In-Pharma Technologist.com

    Google Scholar 

  • Tee OS, Takasaki BK (1985) The cleavage of aspirin by α- and β- cyclodextrins in basic aqueous solution Quick View Other Sources. Canadian Journal of Chemistry 63 (12): 3540–3544.

    Google Scholar 

  • Wang G, Fiske J, Jennings S, Tomasella F, Palaniswamy V, Ray K (2008) Identification and control of a degradation product in Avapro film-coated tablet: low dose formulation. Pharm Dev Technol 13:393–399

    Article  CAS  PubMed  Google Scholar 

  • Wasylaschuk WR, Harmon PA, Wagner G, Harman AB, Templeton AC, Xu H, Reed RA (2007) Evaluation of hydroperoxides in common pharmaceutical excipients. J Pharm Sci 96:106–116

    Article  CAS  PubMed  Google Scholar 

  • Waterman KC, Roy MC (2002) Use of oxygen scavengers to stabilize solid pharmaceutical dosage forms: a case study. Pharm Dev Technol 7(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Waterman KC, Arikpo WB, Fergione MB, Graul TW, Johnson BA, Macdonald BC, Roy MC, Timpano RJ (2008) N-methylation and N-formylation of a secondary amine drug (varenicline) in an osmotic tablet. J Pharm Sci 97(4):1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Wessel W, Schoog M, Winkler E (1971) Polyvinylpyrrolidone (PVP), its diagnostic, therapeutic and technical application and consequences thereof. Drug Res 10:1469–1482

    Google Scholar 

  • Wirth DD, Baertschi SW, Johnson RA, Maple SR, Miller MS, Hallenback DK, Gregg SM (1998) Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine. J Pharm Sci 87:31–39

    Article  CAS  PubMed  Google Scholar 

  • Won CM, Tang SY, Strohbeck CL (1995) Photolytic and oxidative degradation of an antiemetic agent, RG 12915. Int J Pharm 121:95–105

    Article  CAS  Google Scholar 

  • Wu Y, Dali M, Gupta A, Raghavan K (2009) Understanding drug-excipient compatibility: oxidation of compound A in a solid dosage form. Pharm Dev Technol 14(5):556–564

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Hirayama F, Uekama K (1992) Improvement of stability and dissolution of prostaglandin E1 by maltosyl-beta-cyclodextrin in lyophilized formulation. Chem Pharm Bull 40:747–751

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Cornett C, Larsen J, Hansen JH (2010) Reaction between drug substances and pharmaceutical excipients: formation of esters between cetirizine and polyols. J Pharm Biomed Anal 53(3):745–750

    Article  CAS  PubMed  Google Scholar 

  • Zografi G, Byrn SR (1999) The effects of residual water on solid-​state stability of drugs and drug products. In: Roos YH, Leslie RB, Lillford PJ (eds) Water management in the design and distribution of quality foods, [International Symposium on the Properties of Water in Foods]. Helsinki, Finland, pp 397–410

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Helen Fu, Seema Betigeri, Nancy Lewen and Sandy Lee for their contributions in determining trace reactive impurities in excipient samples. The majority of this chapter and illustrations are reprinted from AAPS PharmSciTech, Vol. 12 (© 2011) pp. 1248–1263, with permission from Springer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao V. Mantri Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, Y., Levons, J., Narang, A., Raghavan, K., Mantri, R. (2015). Reactive Impurities in Excipients. In: Narang, A., Boddu, S. (eds) Excipient Applications in Formulation Design and Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-20206-8_3

Download citation

Publish with us

Policies and ethics