Skip to main content

Maternal Comorbidities and First-Trimester Ultrasound Examination

  • Chapter
First-Trimester Ultrasound

Abstract

First-trimester ultrasound is commonly used to confirm an intrauterine pregnancy, establish accurate dates, and in risk assessment for aneuploidy. While a second-trimester anatomical survey remains the “gold standard,” some patients might benefit from first-trimester anatomy ultrasound. Various maternal conditions such as pregestational diabetes, obesity, autoimmune disease, preeclampsia and/or their treatments are known to be associated with structural anomalies or restricted growth. Nowadays, using high-frequency transvaginal transducers, the detection of fetal structural abnormalities in the first trimester is frequently reported. This helps to shift the prenatal diagnosis from the standard second-trimester anatomy scan into the first trimester, and also gives the opportunity for pregnancy termination, in appropriate cases, earlier in gestation.

This chapter summarizes the current uses and applications of the first-trimester ultrasound in patients with comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitworth M, Bricker L, Neilson JP, Dowswell T. Ultrasound for fetal assessment in early pregnancy. Cochrane Database System Rev. 2010; (4):CD007058

    Google Scholar 

  2. Ghi T, Huggon IC, Zosmer N, Nicolaides KH. Incidence of major structural cardiac defects associated with increased nuchal translucency but normal karyotype. Ultrasound Obstet Gynecol. 2001;18(6):610–4.

    CAS  PubMed  Google Scholar 

  3. Hyett JA, Perdu M, Sharland GK, Snijders RS, Nicolaides KH. Increased nuchal translucency at 10-14 weeks of gestation as a marker for major cardiac defects. Ultrasound Obstet Gynecol. 1997;10(4):242–6.

    CAS  PubMed  Google Scholar 

  4. Souka AP, Krampl E, Bakalis S, Heath V, Nicolaides KH. Outcome of pregnancy in chromosomally normal fetuses with increased nuchal translucency in the first trimester. Ultrasound Obstet Gynecol. 2001;18(1):9–17.

    CAS  PubMed  Google Scholar 

  5. Timor-Tritsch IE, Farine D, Rosen MG. A close look at early embryonic development with the high-frequency transvaginal transducer. Am J Obstet Gynecol. 1988;159(3):676–81.

    CAS  PubMed  Google Scholar 

  6. Timor-Tritsch IE, Monteagudo A, Peisner DB. High-frequency transvaginal sonographic examination for the potential malformation assessment of the 9-week to 14-week fetus. J Clin Ultrasound. 1992;20(4):231–8.

    CAS  PubMed  Google Scholar 

  7. Lasser DM, Peisner DB, Vollebergh J, Timor-Tritsch I. First-trimester fetal biometry using transvaginal sonography. Ultrasound Obstet Gynecol. 1993;3(2):104–8.

    CAS  PubMed  Google Scholar 

  8. den Hollander NS, Wessels MW, Niermeijer MF, Los FJ, Wladimiroff JW. Early fetal anomaly scanning in a population at increased risk of abnormalities. Ultrasound Obstet Gynecol. 2002;19(6):570–4.

    Google Scholar 

  9. Michailidis GD, Papageorgiou P, Economides DL. Assessment of fetal anatomy in the first trimester using two- and three-dimensional ultrasound. Br J Radiol. 2002;75(891):215–9.

    CAS  PubMed  Google Scholar 

  10. Hernadi L, Torocsik M. Screening for fetal anomalies in the 12th week of pregnancy by transvaginal sonography in an unselected population. Prenat Diagn. 1997;17(8):753–9.

    CAS  PubMed  Google Scholar 

  11. Whitlow BJ, Economides DL. The optimal gestational age to examine fetal anatomy and measure nuchal translucency in the first trimester. Ultrasound Obstet Gynecol. 1998;11(4):258–61.

    CAS  PubMed  Google Scholar 

  12. Gembruch U, Shi C, Smrcek JM. Biometry of the fetal heart between 10 and 17 weeks of gestation. Fetal Diagn Ther. 2000;15(1):20–31.

    CAS  PubMed  Google Scholar 

  13. Haak MC, Twisk JW, Van Vugt JM. How successful is fetal echocardiographic examination in the first trimester of pregnancy? Ultrasound Obstet Gynecol. 2002;20(1):9–13.

    CAS  PubMed  Google Scholar 

  14. Johnson P, Sharland G, Maxwell D, Allan L. The role of transvaginal sonography in the early detection of congenital heart disease. Ultrasound Obstet Gynecol. 1992;2(4):248–51.

    CAS  PubMed  Google Scholar 

  15. Dolkart LA, Reimers FT. Transvaginal fetal echocardiography in early pregnancy: normative data. Am J Obstet Gynecol. 1991;165(3):688–91.

    CAS  PubMed  Google Scholar 

  16. Timor-Tritsch IE, Bashiri A, Monteagudo A, Arslan AA. Qualified and trained sonographers in the US can perform early fetal anatomy scans between 11 and 14 weeks. Am J Obstet Gynecol. 2004;191(4):1247–52.

    PubMed  Google Scholar 

  17. Borrell A, Robinson JN, Santolaya-Forgas J. Clinical value of the 11- to 13 + 6-week sonogram for detection of congenital malformations: a review. Am J Perinatol. 2011;28(2):117–24.

    PubMed  Google Scholar 

  18. Grande M, Arigita M, Borobio V, Jimenez JM, Fernandez S, Borrell A. First-trimester detection of structural abnormalities and the role of aneuploidy markers. Ultrasound Obstet Gynecol. 2012;39(2):157–63.

    CAS  PubMed  Google Scholar 

  19. Syngelaki A, Chelemen T, Dagklis T, Allan L, Nicolaides KH. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11-13 weeks. Prenat Diagn. 2011;31(1):90–102.

    PubMed  Google Scholar 

  20. Ebrashy A, El Kateb A, Momtaz M, El Sheikhah A, Aboulghar MM, Ibrahim M, et al. 13-14-week fetal anatomy scan: a 5-year prospective study. Ultrasound Obstet Gynecol. 2010;35(3):292–6.

    CAS  PubMed  Google Scholar 

  21. Souka AP, Pilalis A, Kavalakis Y, Kosmas Y, Antsaklis P, Antsaklis A. Assessment of fetal anatomy at the 11-14-week ultrasound examination. Ultrasound Obstet Gynecol. 2004;24(7):730–4.

    CAS  PubMed  Google Scholar 

  22. Salomon LJ, Bernard JP, Duyme M, Dorion A, Ville Y. Revisiting first-trimester fetal biometry. Ultrasound Obstet Gynecol. 2003;22(1):63–6.

    CAS  PubMed  Google Scholar 

  23. Naeye RL. Infants of diabetic mothers: a quantitative, morphologic study. Pediatrics. 1965;35:980–8.

    CAS  PubMed  Google Scholar 

  24. Soler NG, Soler SM, Malins JM. Neonatal morbidity among infants of diabetic mothers. Diabetes Care. 1978;1(6):340–50.

    CAS  PubMed  Google Scholar 

  25. Mills JL. Malformations in infants of diabetic mothers. Teratology 25:385-94. 1982. Birth Defects Res A Clin Mol Teratol. 2010;88(10):769–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Ramos-Arroyo MA, Rodriguez-Pinilla E, Cordero JF. Maternal diabetes: the risk for specific birth defects. Eur J Epidemiol. 1992;8(4):503–8.

    CAS  PubMed  Google Scholar 

  27. Becerra JE, Khoury MJ, Cordero JF, Erickson JD. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics. 1990;85(1):1–9.

    CAS  PubMed  Google Scholar 

  28. Lisowski LA, Verheijen PM, Copel JA, Kleinman CS, Wassink S, Visser GH, et al. Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz. 2010;35(1):19–26.

    PubMed  Google Scholar 

  29. Kucera J. Rate and type of congenital anomalies among offspring of diabetic women. J Reprod Med. 1971;7(2):73–82.

    CAS  PubMed  Google Scholar 

  30. Schwartz R, Teramo KA. Effects of diabetic pregnancy on the fetus and newborn. Semin Perinatol. 2000;24(2):120–35.

    CAS  PubMed  Google Scholar 

  31. Garne E, Loane M, Dolk H, Barisic I, Addor MC, Arriola L, et al. Spectrum of congenital anomalies in pregnancies with pregestational diabetes. Birth Defects Res A Clin Mol Teratol. 2012;94(3):134–40.

    CAS  PubMed  Google Scholar 

  32. Taipale P, Ammala M, Salonen R, Hiilesmaa V. Two-stage ultrasonography in screening for fetal anomalies at 13-14 and 18-22 weeks of gestation. Acta Obstet Gynecol Scand. 2004;83(12):1141–6.

    PubMed  Google Scholar 

  33. Sebire NJ, Noble PL, Thorpe-Beeston JG, Snijders RJ, Nicolaides KH. Presence of the ‘lemon’ sign in fetuses with spina bifida at the 10-14-week scan. Ultrasound Obstet Gynecol. 1997;10(6):403–5.

    CAS  PubMed  Google Scholar 

  34. Nicolaides KH, Campbell S, Gabbe SG, Guidetti R. Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet. 1986;2(8498):72–4.

    CAS  PubMed  Google Scholar 

  35. Cedergren MI, Kallen BA. Maternal obesity and infant heart defects. Obes Res. 2003;11(9):1065–71.

    PubMed  Google Scholar 

  36. Moore LL, Singer MR, Bradlee ML, Rothman KJ, Milunsky A. A prospective study of the risk of congenital defects associated with maternal obesity and diabetes mellitus. Epidemiology. 2000;11(6):689–94.

    CAS  PubMed  Google Scholar 

  37. Martinez-Frias ML, Frias JP, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias JL. Pre-gestational maternal body mass index predicts an increased risk of congenital malformations in infants of mothers with gestational diabetes. Diabet Med. 2005;22(6):775–81.

    CAS  PubMed  Google Scholar 

  38. Towner D, Kjos SL, Leung B, Montoro MM, Xiang A, Mestman JH, et al. Congenital malformations in pregnancies complicated by NIDDM. Diabetes Care. 1995;18(11):1446–51.

    CAS  PubMed  Google Scholar 

  39. Aberg A, Westbom L, Kallen B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev. 2001;61(2):85–95.

    CAS  PubMed  Google Scholar 

  40. Sheffield JS, Butler-Koster EL, Casey BM, McIntire DD, Leveno KJ. Maternal diabetes mellitus and infant malformations. Obstet Gynecol. 2002;100(5 Pt 1):925–30.

    PubMed  Google Scholar 

  41. Rosenn B, Miodovnik M, Combs CA, Khoury J, Siddiqi TA. Glycemic thresholds for spontaneous abortion and congenital malformations in insulin-dependent diabetes mellitus. Obstet Gynecol. 1994;84(4):515–20.

    CAS  PubMed  Google Scholar 

  42. Greene MF. Spontaneous abortions and major malformations in women with diabetes mellitus. Semin Reprod Endocrinol. 1999;17(2):127–36.

    CAS  PubMed  Google Scholar 

  43. Bhattacharyya OK, Estey EA, Cheng AY. Update on the Canadian Diabetes Association 2008 clinical practice guidelines. Can Fam Physician. 2009;55(1):39–43.

    PubMed Central  PubMed  Google Scholar 

  44. American Diabetes Association. Standards of medical care in diabetes-2010. Diabetes Care. 2010;33 Suppl 1:S11–61.

    PubMed Central  Google Scholar 

  45. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357(2):135–42.

    PubMed  Google Scholar 

  46. Timor-Tritsch IE, Monteagudo A, Warren WB. Transvaginal ultrasonographic definition of the central nervous system in the first and early second trimesters. Am J Obstet Gynecol. 1991;164(2):497–503.

    CAS  PubMed  Google Scholar 

  47. Schiesser M, Holzgreve W, Lapaire O, Willi N, Luthi H, Lopez R, et al. Sirenomelia, the mermaid syndrome–detection in the first trimester. Prenat Diagn. 2003;23(6):493–5.

    PubMed  Google Scholar 

  48. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults--the evidence report. National Institutes of Health. Obes Res. 1998;6(suppl 2):51S–209S

    Google Scholar 

  49. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991-1998. JAMA. 1999;282(16):1519–22.

    CAS  PubMed  Google Scholar 

  50. Gross T, Sokol RJ, King KC. Obesity in pregnancy: risks and outcome. Obstet Gynecol. 1980;56(4):446–50.

    CAS  PubMed  Google Scholar 

  51. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief. 2012(82):1–8

    Google Scholar 

  52. Hendricks KA, Nuno OM, Suarez L, Larsen R. Effects of hyperinsulinemia and obesity on risk of neural tube defects among Mexican Americans. Epidemiology. 2001;12(6):630–5.

    CAS  PubMed  Google Scholar 

  53. Mikhail LN, Walker CK, Mittendorf R. Association between maternal obesity and fetal cardiac malformations in African Americans. J Natl Med Assoc. 2002;94(8):695–700.

    PubMed Central  PubMed  Google Scholar 

  54. Queisser-Luft A, Kieninger-Baum D, Menger H, Stolz G, Schlaefer K, Merz E. Does maternal obesity increase the risk of fetal abnormalities? Analysis of 20,248 newborn infants of the Mainz Birth Register for detecting congenital abnormalities. Ultraschall Med. 1998;19(1):40–4. Erhoht mutterliche Adipositas das Risiko fur kindliche Fehlbildungen? Analyse von 20,248 Neugeborenen des Mainzer Geburtenregisters zur Erfassung angeborener Fehlbildungen.

    CAS  PubMed  Google Scholar 

  55. Blomberg MI, Kallen B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res A Clin Mol Teratol. 2010;88(1):35–40.

    CAS  PubMed  Google Scholar 

  56. Thornburg LL, Miles K, Ho M, Pressman EK. Fetal anatomic evaluation in the overweight and obese gravida. Ultrasound Obstet Gynecol. 2009;33(6):670–5.

    CAS  PubMed  Google Scholar 

  57. Dashe JS, McIntire DD, Twickler DM. Effect of maternal obesity on the ultrasound detection of anomalous fetuses. Obstet Gynecol. 2009;113(5):1001–7.

    PubMed  Google Scholar 

  58. Hendler I, Blackwell SC, Bujold E, Treadwell MC, Wolfe HM, Sokol RJ, et al. The impact of maternal obesity on midtrimester sonographic visualization of fetal cardiac and craniospinal structures. Int J Obes Relat Metab Disord. 2004;28(12):1607–11.

    CAS  PubMed  Google Scholar 

  59. Gupta S, Timor-Tritsch IE, Oh C, Chervenak J, Monteagudo A. Early second-trimester sonography to improve the fetal anatomic survey in obese patients. J Ultrasound Med. 2014;33(9):1579–83.

    PubMed  Google Scholar 

  60. Timor-Tritsch IE. Transvaginal sonographic evaluation of fetal anatomy at 14 to 16 weeks. Why is this technique not attractive in the United States? J Ultrasound Med. 2001;20(7):705–9.

    CAS  PubMed  Google Scholar 

  61. Rowland TW, Hubbell Jr JP, Nadas AS. Congenital heart disease in infants of diabetic mothers. J Pediatr. 1973;83(5):815–20.

    CAS  PubMed  Google Scholar 

  62. Erickson JD. Risk factors for birth defects: data from the Atlanta Birth Defects Case-Control Study. Teratology. 1991;43(1):41–51.

    CAS  PubMed  Google Scholar 

  63. Correa A, Gilboa SM, Botto LD, Moore CA, Hobbs CA, Cleves MA, et al. Lack of periconceptional vitamins or supplements that contain folic acid and diabetes mellitus-associated birth defects. Am J Obstet Gynecol. 2012;206(3):218.e1–13.

    CAS  Google Scholar 

  64. Correa A, Gilboa SM, Besser LM, Botto LD, Moore CA, Hobbs CA, et al. Diabetes mellitus and birth defects. Am J Obstet Gynecol. 2008;199(3):2371–9.

    Google Scholar 

  65. Ray JG, O’Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM. 2001;94(8):435–44.

    CAS  PubMed  Google Scholar 

  66. Wahabi HA, Alzeidan RA, Bawazeer GA, Alansari LA, Esmaeil SA. Preconception care for diabetic women for improving maternal and fetal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2010;10:63.

    PubMed Central  PubMed  Google Scholar 

  67. Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and metaanalysis. J Clin Endocrinol Metab. 2009;94(11):4284–91.

    CAS  PubMed  Google Scholar 

  68. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    PubMed  Google Scholar 

  69. Garne E, Stoll C, Clementi M. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol. 2001;17(5):386–91.

    CAS  PubMed  Google Scholar 

  70. Hoffman JI. Congenital heart disease: incidence and inheritance. Pediatr Clin North Am. 1990;37(1):25–43.

    CAS  PubMed  Google Scholar 

  71. Wan AW, Jevremovic A, Selamet Tierney ES, McCrindle BW, Dunn E, Manlhiot C, et al. Comparison of impact of prenatal versus postnatal diagnosis of congenitally corrected transposition of the great arteries. Am J Cardiol. 2009;104(9):1276–9.

    PubMed  Google Scholar 

  72. Tworetzky W, McElhinney DB, Reddy VM, Brook MM, Hanley FL, Silverman NH. Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation. 2001;103(9):1269–73.

    CAS  PubMed  Google Scholar 

  73. Lagopoulos ME, Manlhiot C, McCrindle BW, Jaeggi ET, Friedberg MK, Nield LE. Impact of prenatal diagnosis and anatomical subtype on outcome in double outlet right ventricle. Am Heart J. 2010;160(4):692–700.

    PubMed  Google Scholar 

  74. Gembruch U, Knopfle G, Chatterjee M, Bald R, Hansmann M. First-trimester diagnosis of fetal congenital heart disease by transvaginal two-dimensional and Doppler echocardiography. Obstet Gynecol. 1990;75(3 Pt 2):496–8.

    CAS  PubMed  Google Scholar 

  75. Makrydimas G, Sotiriadis A, Ioannidis JP. Screening performance of first-trimester nuchal translucency for major cardiac defects: a meta-analysis. Am J Obstet Gynecol. 2003;189(5):1330–5.

    PubMed  Google Scholar 

  76. Muller MA, Clur SA, Timmerman E, Bilardo CM. Nuchal translucency measurement and congenital heart defects: modest association in low-risk pregnancies. Prenat Diagn. 2007;27(2):164–9.

    CAS  PubMed  Google Scholar 

  77. Clur SA, Ottenkamp J, Bilardo CM. The nuchal translucency and the fetal heart: a literature review. Prenat Diagn. 2009;29(8):739–48.

    CAS  PubMed  Google Scholar 

  78. Montenegro N, Matias A, Areias JC. Ductus venosus blood flow evaluation: its importance in the screening of chromosomal abnormalities. Am J Obstet Gynecol. 1999;181(4):1042–3.

    CAS  PubMed  Google Scholar 

  79. Matias A, Gomes C, Flack N, Montenegro N, Nicolaides KH. Screening for chromosomal abnormalities at 10-14 weeks: the role of ductus venosus blood flow. Ultrasound Obstet Gynecol. 1998;12(6):380–4.

    CAS  PubMed  Google Scholar 

  80. Martinez JM, Comas M, Borrell A, Bennasar M, Gomez O, Puerto B, et al. Abnormal first-trimester ductus venosus blood flow: a marker of cardiac defects in fetuses with normal karyotype and nuchal translucency. Ultrasound Obstet Gynecol. 2010;35(3):267–72.

    CAS  PubMed  Google Scholar 

  81. Maiz N, Nicolaides KH. Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac defects and monochorionic twin complications. Fetal Diagn Ther. 2010;28(2):65–71.

    PubMed  Google Scholar 

  82. Bilardo CM, Muller MA, Zikulnig L, Schipper M, Hecher K. Ductus venosus studies in fetuses at high risk for chromosomal or heart abnormalities: relationship with nuchal translucency measurement and fetal outcome. Ultrasound Obstet Gynecol. 2001;17(4):288–94.

    CAS  PubMed  Google Scholar 

  83. Favre R, Cherif Y, Kohler M, Kohler A, Hunsinger MC, Bouffet N, et al. The role of fetal nuchal translucency and ductus venosus Doppler at 11-14 weeks of gestation in the detection of major congenital heart defects. Ultrasound Obstet Gynecol. 2003;21(3):239–43.

    CAS  PubMed  Google Scholar 

  84. Maiz N, Plasencia W, Dagklis T, Faros E, Nicolaides K. Ductus venosus Doppler in fetuses with cardiac defects and increased nuchal translucency thickness. Ultrasound Obstet Gynecol. 2008;31(3):256–60.

    CAS  PubMed  Google Scholar 

  85. Smrcek JM, Berg C, Geipel A, Fimmers R, Diedrich K, Gembruch U. Early fetal echocardiography: heart biometry and visualization of cardiac structures between 10 and 15 weeks’ gestation. J Ultrasound Med. 2006;25(2):173–82. quiz 83-5.

    PubMed  Google Scholar 

  86. Platt LD, Koch R, Hanley WB, Levy HL, Matalon R, Rouse B, et al. The international study of pregnancy outcome in women with maternal phenylketonuria: report of a 12-year study. Am J Obstet Gynecol. 2000;182(2):326–33.

    CAS  PubMed  Google Scholar 

  87. Lenke RR, Levy HL. Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med. 1980;303(21):1202–8.

    CAS  PubMed  Google Scholar 

  88. Koch R, Friedman E, Azen C, Hanley W, Levy H, Matalon R, et al. The International Collaborative Study of Maternal Phenylketonuria: status report 1998. Eur J Pediatr. 2000;159 Suppl 2:S156–60.

    PubMed  Google Scholar 

  89. Matalon KM, Acosta PB, Azen C. Role of nutrition in pregnancy with phenylketonuria and birth defects. Pediatrics. 2003;112(6 Pt 2):1534–6.

    PubMed  Google Scholar 

  90. Michals-Matalon K, Platt LD, Acosta PP, Azen C, Walla CA. Nutrient intake and congenital heart defects in maternal phenylketonuria. Am J Obstet Gynecol. 2002;187(2):441–4.

    PubMed  Google Scholar 

  91. Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, et al. Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011;10(7):609–17.

    CAS  PubMed  Google Scholar 

  92. Holmes LB, Harvey EA, Coull BA, Huntington KB, Khoshbin S, Hayes AM, et al. The teratogenicity of anticonvulsant drugs. N Engl J Med. 2001;344(15):1132–8.

    CAS  PubMed  Google Scholar 

  93. Samren EB, van Duijn CM, Koch S, Hiilesmaa VK, Klepel H, Bardy AH, et al. Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European prospective study of human teratogenesis associated with maternal epilepsy. Epilepsia. 1997;38(9):981–90.

    CAS  PubMed  Google Scholar 

  94. Samren EB, van Duijn CM, Christiaens GC, Hofman A, Lindhout D. Antiepileptic drug regimens and major congenital abnormalities in the offspring. Ann Neurol. 1999;46(5):739–46.

    CAS  PubMed  Google Scholar 

  95. Canger R, Battino D, Canevini MP, Fumarola C, Guidolin L, Vignoli A, et al. Malformations in offspring of women with epilepsy: a prospective study. Epilepsia. 1999;40(9):1231–6.

    CAS  PubMed  Google Scholar 

  96. Kaneko S, Battino D, Andermann E, Wada K, Kan R, Takeda A, et al. Congenital malformations due to antiepileptic drugs. Epilepsy Res. 1999;33(2-3):145–58.

    CAS  PubMed  Google Scholar 

  97. Holmes LB. The teratogenicity of anticonvulsant drugs: a progress report. J Med Genet. 2002;39(4):245–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Holmes LB, Mittendorf R, Shen A, Smith CR, Hernandez-Diaz S. Fetal effects of anticonvulsant polytherapies: different risks from different drug combinations. Arch Neurol. 2011;68(10):1275–81.

    PubMed  Google Scholar 

  99. Barrett C, Richens A. Epilepsy and pregnancy: report of an Epilepsy Research Foundation Workshop. Epilepsy Res. 2003;52(3):147–87.

    PubMed  Google Scholar 

  100. Matalon S, Schechtman S, Goldzweig G, Ornoy A. The teratogenic effect of carbamazepine: a meta-analysis of 1255 exposures. Reprod Toxicol. 2002;16(1):9–17.

    CAS  PubMed  Google Scholar 

  101. Arpino C, Brescianini S, Robert E, Castilla EE, Cocchi G, Cornel MC, et al. Teratogenic effects of antiepileptic drugs: use of an International Database on Malformations and Drug Exposure (MADRE). Epilepsia. 2000;41(11):1436–43.

    CAS  PubMed  Google Scholar 

  102. Lindhout D, Omtzigt JG. Teratogenic effects of antiepileptic drugs: implications for the management of epilepsy in women of childbearing age. Epilepsia. 1994;35 Suppl 4:S19–28.

    PubMed  Google Scholar 

  103. Jentink J, Dolk H, Loane MA, Morris JK, Wellesley D, Garne E, et al. Intrauterine exposure to carbamazepine and specific congenital malformations: systematic review and case-control study. BMJ. 2010;341:c6581.

    PubMed Central  PubMed  Google Scholar 

  104. Janz D. Are antiepileptic drugs harmful when taken during pregnancy? J Perinat Med. 1994;22(5):367–77.

    CAS  PubMed  Google Scholar 

  105. Thomas SV, Ajaykumar B, Sindhu K, Francis E, Namboodiri N, Sivasankaran S, et al. Cardiac malformations are increased in infants of mothers with epilepsy. Pediatr Cardiol. 2008;29(3):604–8.

    CAS  PubMed  Google Scholar 

  106. Floyd RL, Sidhu JS. Monitoring prenatal alcohol exposure. Am J Med Genet C Semin Med Genet. 2004;127C(1):3–9.

    PubMed  Google Scholar 

  107. Hoyme HE, May PA, Kalberg WO, Kodituwakku P, Gossage JP, Trujillo PM, et al. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 institute of medicine criteria. Pediatrics. 2005;115(1):39–47.

    PubMed  Google Scholar 

  108. Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.

    CAS  PubMed  Google Scholar 

  109. Clarren SK, Smith DW. The fetal alcohol syndrome. N Engl J Med. 1978;298(19):1063–7.

    CAS  PubMed  Google Scholar 

  110. Burd L, Deal E, Rios R, Adickes E, Wynne J, Klug MG. Congenital heart defects and fetal alcohol spectrum disorders. Congenit Heart Dis. 2007;2(4):250–5.

    PubMed  Google Scholar 

  111. Gomez O, Martinez JM, Figueras F, Del Rio M, Borobio V, Puerto B, et al. Uterine artery Doppler at 11-14 weeks of gestation to screen for hypertensive disorders and associated complications in an unselected population. Ultrasound Obstet Gynecol. 2005;26(5):490–4.

    CAS  PubMed  Google Scholar 

  112. Prefumo F, Guven M, Ganapathy R, Thilaganathan B. The longitudinal variation in uterine artery blood flow pattern in relation to birth weight. Obstet Gynecol. 2004;103(4):764–8.

    PubMed  Google Scholar 

  113. Gomez O, Figueras F, Martinez JM, del Rio M, Palacio M, Eixarch E, et al. Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome. Ultrasound Obstet Gynecol. 2006;28(6):802–8.

    CAS  PubMed  Google Scholar 

  114. Velauthar L, Plana MN, Kalidindi M, Zamora J, Thilaganathan B, Illanes SE, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol. 2014;43(5):500–7.

    CAS  PubMed  Google Scholar 

  115. Bujold E, Morency AM, Roberge S, Lacasse Y, Forest JC, Giguere Y. Acetylsalicylic acid for the prevention of preeclampsia and intra-uterine growth restriction in women with abnormal uterine artery Doppler: a systematic review and meta-analysis. J Obstet Gynaecol Can. 2009;31(9):818–26.

    PubMed  Google Scholar 

  116. American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of obstetric ultrasound examinations. J Ultrasound Med. 2013;32(6):1083–101.

    Google Scholar 

  117. Carvalho JS. Fetal heart scanning in the first trimester. Prenat Diagn. 2004;24(13):1060–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bronshtein MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bronshtein, E., Puder, K.S. (2016). Maternal Comorbidities and First-Trimester Ultrasound Examination. In: Abramowicz, J. (eds) First-Trimester Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-319-20203-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20203-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20202-0

  • Online ISBN: 978-3-319-20203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics