Skip to main content

Gas Balances and Growth in Algal Cultures

  • Chapter
Algal Biorefineries

Abstract

This chapter reviews some of the most important aspects related to the growth of microalgae with their main substrate, carbon dioxide (CO2), and product, oxygen (O2). Both gases exist in the aqueous nutrient medium in dynamic equilibrium with the incoming CO2 contained in air and in the case of open systems, with the exterior environment. The concentrations of both gases, along with other environmental parameters including light, temperature, nutrients, etc. affect photosynthesis and, consequently, the growth rates and productivities. The effect of environmental conditions and medium composition is reviewed in terms of mass balances initially and then kinetic growth models based on these conditions. Transfer of CO2 and O2 is described and then integrated with cell kinetics highlighting recent developments in models describing dynamic system, along with advanced computational tools used in solving and representing the hydrodynamics in photobioreactors. Finally, an example with experimental results is presented. Detailed procedures to obtain parameters used in microalgal kinetics, mass transfer and hydrodynamics expressions are described and used to validate a dynamic model simulating the performance of an airlift photobioreactor inoculated with Scenedesmus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa K, Miyachi M (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Rev 39:215–233

    Article  CAS  Google Scholar 

  • Akita K, Yoshida F (1973) Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Ind Eng Chem Process Des Dev 12(1):76–80

    Article  CAS  Google Scholar 

  • Alcántara C, García-Encina PA, Muñoz R (2013) Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process. Chem Eng J 221:238–246

    Article  CAS  Google Scholar 

  • Azov Y (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol 43:1300–1306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic acid anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663

    Article  PubMed  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Bello RA (1981) A characterization study of airlift contactors for application to fermentations. Ph D thesis. University of Waterloo, Ontario, Canada

    Google Scholar 

  • Ben Amotz B, Tornabene TG (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123:520–527

    Article  CAS  PubMed  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Fresh water and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Convers Manag 50:262–267

    Article  CAS  Google Scholar 

  • Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76(2):131–147

    Article  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101:6768–6777

    Article  CAS  PubMed  Google Scholar 

  • Cabello J, Morales M, Revah S (2014) Dynamic photosynthetic response of the microalga Scenedesmus obtusiusculus to light intensity perturbations in an airlift photobioreactor. Chem Eng J 252:104–111

    Article  CAS  Google Scholar 

  • Cabello J, Toledo A, Sánchez L, Revah S, Morales M (2015) Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under optimal conditions and nitrogen starvation. Bioresour Technol 181:128–135

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E, Chisti Y (1989) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81(4):459–473

    Article  CAS  Google Scholar 

  • Camacho-Rubio F, Acién Fernández FG, Sánchez Pérez JA, García Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  Google Scholar 

  • Camacho-Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81(4):459–473

    Article  CAS  Google Scholar 

  • Camacho-Rubio F, Sánchez Mirón A, Cerón García MC, García Camacho F (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59:4369–4376

    Article  CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Chisti Y (1989) Airlift bioreactors. Elsevier, London

    Google Scholar 

  • Chisti Y (1998) Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics and transport phenomena. Appl Mech Rev 51:33–112

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti MY, Moo-Young M (1987) Airlift-reactors: characteristic, applications and design considerations. Chem Eng Commun 60:195–242

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396

    Article  CAS  PubMed  Google Scholar 

  • Chu W-L (2012) Biotechnological applications of microalgae. IeJSME 6(Suppl 1):S24–S37

    Google Scholar 

  • Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21(3):741–750

    Article  CAS  PubMed  Google Scholar 

  • Concas A, Pisu M, Cao G (2010) Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chem Eng J 157:297–303

    Article  CAS  Google Scholar 

  • Costache TA, Acién FG, Morales MM, Fernández-Sevilla JM, Stamati I, Molina-Grima E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactor. Appl Microbiol Biotechnol 97(17):7627–7637

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65. doi:10.1016/j.jclepro.2014.03.034

  • Danquah MK, Harun R, Halim R, Forde GM (2010) Cultivation medium design via elemental balancing for Tetraselmis suecica. Chem Biochem Eng Q 24(3):361–369

    CAS  Google Scholar 

  • de Morais MG, Costa JA (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Eilers PHC, Peeters JCH (1993) Dynamic behaviour of a model for photosynthesis and photoinhibition. Ecol Model 69:113–133

    Article  CAS  Google Scholar 

  • Erickson LE, Curless CE, Lee HY (1987) Modeling and simulation of photosynthetic microbial growth. Ann N Y Acad Sci 506:308–324

    Article  CAS  Google Scholar 

  • Fair JR (1967) Designing gas-sparged reactors. Chem Eng 74(14):67–74

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden

    Google Scholar 

  • Fan LH, Zhang YT, Cheng LH, Zhang L, Tang D-S, Chen H-L (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane‐photobioreactor. Chem Eng Technol 30(8):1094–1099

    Article  CAS  Google Scholar 

  • Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sust Energ Rev 21:712–727

    Article  CAS  Google Scholar 

  • Fernández I, Acién FG, Fernández JM, Guzmán JL, Magán JJ, Berenguel M (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181

    Article  PubMed  CAS  Google Scholar 

  • Fernández I, Acién FG, Berenguel M, Guzmán JL, Andrade GA, Pagano DJ (2014) A lumped parameter chemical–physical model for tubular photobioreactors. Chem Eng Sci 112:116–129

    Article  CAS  Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of marine microalgae Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Gallardo-Rodriguez JJ, García-Camacho F, Sánchez Mirón A, López-Rosales L, Chisti Y, Molina-Grima R (2011) Shear-induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga. Biotechnol Prog 28(2):467–473

    Article  PubMed  CAS  Google Scholar 

  • Goldberg IK, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Hadiyanto H, Elmore S, Gerven TV, Stankiewicz A (2013) Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J 217:231–239

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Hekmat A, Amooghin AE, Moraveji MK (2010) CFD simulation of gas-liquid behavior in an air-lift reactor: determination of the optimum distance of the draft tube. Simul Model Pract Theory 18(7):927–945

    Article  Google Scholar 

  • Hikita H, Kikukawa H (1974) Liquid-phase mixing in bubble columns: effect of liquid properties. Chem Eng J 8(3):191–197

    Article  CAS  Google Scholar 

  • Hikita H, Asai S, Tanigawa K, Segawa K, Kitao M (1980) Gas hold-up in bubble columns. Chem Eng J 20(1):59–67

    Article  CAS  Google Scholar 

  • Hikita H, Asai S, Tanigawa K, Segawa K, Kitao M (1981) The volumetric liquid-phase mass transfer coefficient in bubble columns. Chem Eng J 22(1):61–69

    Article  CAS  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emissions mitigation systems-A review. Biotechnol Adv 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Li M, Zhou R, Sun Y (2012) Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation. Bioresour Technol 104:608–615

    Article  CAS  PubMed  Google Scholar 

  • Jeon J-C, Cho C-W, Yun Y-S (2005) Measurement of microalgal photosynthetic activity depending on light intensity and quality. Biochem Eng J 27:127–131

    Article  CAS  Google Scholar 

  • Joshi JB, Ranade VV, Gharat SD, Lele SS (1990) Sparged loop reactors. Can J Chem Eng 68:705–741

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638

    Article  CAS  Google Scholar 

  • Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493

    Article  CAS  PubMed  Google Scholar 

  • Kawase Y, Moo-Young M (1987) Theoretical prediction of gas holdup in bubble columns with Newtonian fluids. Ind Eng Chem Res 26:933–937

    Article  CAS  Google Scholar 

  • Kemblowski Z, Przywarski J, Diab A (1993) Average gas holdup and liquid circulation velocity in airlift reactors with external loop. Chem Eng Sci 48:4023–4035

    Article  CAS  Google Scholar 

  • Koide K, Kimura M, Nitta H, Kawabata H (1988) Liquid circulation in bubble column with draught tube. J Chem Eng Jpn 21:393–399

    Article  CAS  Google Scholar 

  • Kommareddy AR, Anderson GA (2003) Study of light as a parameter in the growth of algae in a photo-bio reactor (PBR). ASAE Paper No. 034057. ASAE, St. Joseph

    Google Scholar 

  • Koru E (2012) Earth food Spirulina (Arthrospira): production and quality standards. In: Yehia E-S (ed) Food additive. InTech Europe, Rijeka, Croatia, ISBN 978-953-51-0067-6

    Google Scholar 

  • Krishna R, van Baten JM (2003) Mass transfer in bubble columns. Catal Today 79–80:67–75

    Article  CAS  Google Scholar 

  • Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H (2010) A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85(3):387–394

    Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering. Wiley, New York, pp 260–327

    Google Scholar 

  • Liffman K, Paterson DA, Liovic P, Bandopadhayay P (2013) Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chem Eng Res Des 91:221–226

    Article  CAS  Google Scholar 

  • Luo HP, Al-Dahhan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85(4):382–393

    Article  CAS  PubMed  Google Scholar 

  • Luo HP, Al-Dahhan MH (2008) Macro-mixing in a draft-tube airlift bioreactor. Chem Eng Sci 63(6):1572–1585

    Article  CAS  Google Scholar 

  • Luo HP, Al-Dahhan MH (2010) Local gas holdup in a draft tube airlift bioreactor. Chem Eng Sci 65(15):4503–4510

    Article  CAS  Google Scholar 

  • Luo HP, Al-Dahhan MH (2011) Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem Eng Sci 66:907–923

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Stolyar SM, Fredrickson JM, Konopka JM, Beliaev AS (2013) Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria. Bioresour Technol 134:127–133

    Article  CAS  PubMed  Google Scholar 

  • Merchuk JC, Contreras A, García F, Molina-Grima E (1998) Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem Eng Sci 53(4):709–719

    Article  CAS  Google Scholar 

  • Mersmann A (1978) Design and scale up of bubble and spray columns. Ger Chem Eng 1:1–11

    Google Scholar 

  • Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J Exp Bot 64(3):769–786

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Molina-Grima E, García Camacho F, Sánchez Pérez JA, Fernández Sevilla J, Acién Fernández FG, Contreras Gómez A (1994) A mathematical model of microalgal growth in light limited chemostat cultures. J Chem Technol Biotechnol 61:167–173

    Article  CAS  Google Scholar 

  • Molina-Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors:light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Molina-Grima E, Belarbia EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Moss B (1973) The influence of environmental factors on the distribution of freshwater algae: an experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. J Ecol 61:157–177

    Article  CAS  Google Scholar 

  • Nedbal L, Cervený J, Keren N, Kaplan A (2010) Experimental validation of a non-equilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor. J Ind Microbiol 37(12):1319–1326

    Article  CAS  Google Scholar 

  • Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653

    Article  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96(1):129–134

    Article  Google Scholar 

  • Pandey JP, Pathak N, Tiwari A (2010) Standardization of pH and light intensity for the biomass production of Spirulina platensis. J Algal Biomass Util 1(2):93–102

    Google Scholar 

  • Perner I, Posten C, Broneske J (2003) CFD Optimization of a plate photobioreactor used for cultivation of microalgae. Eng Life Sci 3(7):287–291

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of microalgae – a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

  • Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489

    Article  CAS  Google Scholar 

  • Pruvost J, Cornet JF, Legrand J (2008) Hydrodynamics influence on light conversion in photobioreactors: an energetically consistent analysis. Chem Eng Sci 63:3679–3694

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12(1):53–164

    Google Scholar 

  • Ratha SK, Prasanna R (2012) Bioprospecting microalgae as potential sources of “Green Energy”-Challenges and perspectives (Review). Appl Biochem Biotechnol 48(2):109–125

    CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B Biol Sci 367:493–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebolloso-Fuentes MM, García JL, Fernández JM, Acién FG, Sánchez JA, Molina E (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288

    Article  CAS  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Mirón A, García Camacho F, Contreras Gomez A, Molina Grima E, Chisti Y (2000) Bubble-column and airlift photobioreactors for algal culture. AIChE J 46(91):1872–1877

    Article  Google Scholar 

  • Sánchez Mirón A, Cerón Garcıa MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manag 47:791–799

    Article  CAS  Google Scholar 

  • Shah YT, Stiegel GJ, Sharma MM (1978) Backmixing in gas-liquid reactors. AIChE J 24(3):369–400

    Article  CAS  Google Scholar 

  • Shah Y, Kelkar B, Delker W (1982) Design parameters estimations for bubble column reactors. AIChE J 28(3):353–379

    Article  CAS  Google Scholar 

  • Sharma G, Kumar M, Ali MI, Jasuja ND (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Microb Biochem Technol 6:202–206

    Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Chang 18(1):73–95

    Article  Google Scholar 

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179

    Article  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett 35:1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Spadiut O, Rittmann S, Dietzsch C, Herwig C (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13:88–101

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York, p 1022

    Google Scholar 

  • Suali E, Sarbatly S (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16:4316–4342

    Article  CAS  Google Scholar 

  • Sugai-Guérios MH, Mariano AB, Vargas JVC, de Lima Luz LF, Mitchell DA (2014) Mathematical model of the CO2 solubilisation reaction rates developed for the study of photobioreactors. Can J Chem Eng 92(5):787–795

    Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC (1998) Isolation of a new highly CO2 tolerant fresh water microalgae Chlorella sp. KR-1. Kor J Chem Eng 15:449–450

    Article  CAS  Google Scholar 

  • Takagi M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Watanabe K, Yamaberi K, Yoshida Y (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54:112–117

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Cervantes A, Morales M, Novelo E, Revah S (2013) Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour Technol 130:652–658

    Article  CAS  PubMed  Google Scholar 

  • Valdés FJ, Hernández MR, Catalá L (2012) Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to Nannochloropsis oculata microalgae culture. Bioresour Technol 119:1–6

    Article  PubMed  CAS  Google Scholar 

  • Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Biotechnol 47(9):789–807

    CAS  Google Scholar 

  • Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, p 57

    Google Scholar 

  • Wang L, Agyemang SA, Amini H, Shahbazi A (2015) Mathematical modeling of production and biorefinery of energy crops. Renew Sust Energ Rev 43:530–544

    Article  Google Scholar 

  • Wu X, Merchuk JC (2004) Simulation of algae growth in a bench scale internal loop airlift reactor. Chem Eng Sci 59:2899–2912

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Ying K, James Gilmour D, Zimmerman WB (2014) Effects of CO2 and pH on growth of the microalga Dunaliella salina. J Microb Biochem Technol 6:167–173

    Article  CAS  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 14:1297–1300

    Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimization aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25:97–101

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Morales .

Editor information

Editors and Affiliations

List of Acronyms

List of Acronyms

ADM:

Axial dispersion model

ADP:

Adenosine diphosphate

AllnGap II:

Aluminum indium gallium phosphide

ATP:

Adenosine triphosphate

CA:

Carbonic anhydrase

CARPT:

Computer-automated radioactive particle

CCM:

Carbon dioxide concentration mechanism

CFD:

Dynamic Fluid Computational

chCA:

Chloroplast carbonic anhydrase

cyCA:

Cytosolic carbonic anhydrase

DIC:

Dissolved inorganic carbon

DNA:

Deoxyribonucleic acid

DO:

Dissolved oxygen

DW:

Dry weight

LEDs:

Light emitting diodes

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

pCA:

Periplasmic carbonic anhydrase

PSF:

Photosynthetic factory

PSII:

Photosystem II

RNA:

Ribonucleic acid

RTD:

Residence time distribution

Rubisco:

Ribulose bisphosphate carboxylase-oxygenase

STR:

Stirred tank reactor

VVM:

Gas volume flow per unit of liquid volume per minute

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morales, M., Cabello, J., Revah, S. (2015). Gas Balances and Growth in Algal Cultures. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_8

Download citation

Publish with us

Policies and ethics