Skip to main content

Design of Closed Photobioreactors for Algal Cultivation

  • Chapter
Algal Biorefineries

Abstract

Apart from their indispensable role as solar-driven oxygen factories, microalgae act as powerful microbial cell factories for production of various intra- or extracellular bio-products like proteins, lipids, pigments, well-known and exotic carbohydrates, biopolyesters, antibiotics or bio-hydrogen. These products can serve the demands of various markets such as the fuel- and energy sector, cosmetic industry, pharmaceutical industry, convenience- and functional food, and agriculture, or even constitute novel raw-materials for manufacturing of biodegradable plastic materials.

Efficient output of these products by using selected microalgal species requires the adaptation of the cultivation system to the special requirements of different microalgae. Factors like protection against microbial contamination, optimized nutrient supply, tailored illumination, sufficient outgassing of the produced oxygen, and maintaining pH-value and temperature in the optimum range have to be taken into account when designing an algae-based production platform for bio-products.

Simple, well-known open cultivation systems are operating at typical natural environmental conditions which are far below the real biosynthetic potential of these microbial cell factories. As a common consequence, such systems only produce modest cell densities at low volumetric productivity. Closed systems allow for the adaptation of process conditions to the optimum values inherent in the different species, provide the possibility to implement more effective illumination systems, prevent water loss by evaporation, avoid the entrance of competing microbes into the system, and circumvent the release of the algal cells into the environment. Hence, high output for desired algal bio-products requires the development of sophisticated closed photobioreactor (PBR) systems; they are designed based both on deep understanding for microbial processes and on process engineering know-how. Such optimized design, mimicking nature’s strategies for light harvest, constitutes the pre-requisite for economic success of phototrophic biotechnology that now is already announced since decades. The chapter at hands offers a detailed overview of different used types of photobioreactors for cultivation of microalgae, highlighting their opportunities, advantages and constraints, devotes special attention to the scalability of different PBR systems, and provides examples for successful (semi)industrial implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35(2):215–226

    Article  Google Scholar 

  • Azov Y (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol 43(6):1300–1306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bajpai R, Zappi M, Dufreche S, Subramaniam R, Prokop A (2014) Status of algae as vehicles for commercial production of fuels and chemicals. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 3–24

    Chapter  Google Scholar 

  • Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat‐panel reactor using the A‐stat technique. Biotechnol Bioeng 89(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72(3):593–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berberoglu H, Yin J, Pilon L (2007) Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrog Energy 32(13):2273–2285

    Article  CAS  Google Scholar 

  • Betula C, Campsis L, Sambucus S, Cornus D, Quercus L, Carya L (1986) Hosts of the parasitic alga Cephaleuros virescens in Louisiana and new host records for the continental United States. Plant Dis 70(11):1080–1083

    Article  Google Scholar 

  • Birmingham BC, Coleman JR, Colman B (1982) Measurement of photorespiration in algae. Plant Physiol 69(1):259–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1996) Closed algal photobioreactors: Design considerations for large-scale systems. J Mar Biotechnol 4(4):185–191

    CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35:313–321

    Article  Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Arch Microbiol 96(1):37–52

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Borowitzka MA, Moulton TP (1984) The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116(117):115–134

    Article  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776

    Article  PubMed  CAS  Google Scholar 

  • Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K (1995) Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 41(13):239–248

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon A et al (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146(1):60–78

    Article  CAS  Google Scholar 

  • Castenholz RW (1969a) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33(4):476–504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castenholz RW (1969b) The thermophylic cyanophytes of Iceland and the upper temperature limit. J Phycol 5(4):360–368

    Article  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Chini Zitelli G, Rodolfi L, Tredici MR (2000) Mass cultivation of marine microalgae under natural, mixed and artificial illumination. In: 4th European workshop on biotechnology of microalgae. Bergholz-Rehbrücke, Germany

    Google Scholar 

  • Chini Zitelli G, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15(2–3):107–114

    Article  Google Scholar 

  • Chini Zitelli G, Somigli S, Rodolfi L, Tredici MR (2004) Outdoor mass cultivation of Isochrysis sp. in annular reactors. In: Abstracts of the first Latinoamerican Congress on Algal Biotechnology (CLABA), Buenos Aires, Argentina, 25–29 Oct 2004, p 45

    Google Scholar 

  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214

    Article  CAS  PubMed  Google Scholar 

  • Concas A, Pisu M, Cao G (2010) Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chem Eng J 157(2):297–303

    Article  CAS  Google Scholar 

  • Cotta F, Matschke M, Großmann J, Griehl C, Matthes S (2011) Verfahrenstechnische Aspekte eines flexiblen, tubulären Systems zur Algenproduktion (Process-related aspects of a flexible, tubular system for algae production); lecture at DECHEMA 2011

    Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 147–173

    Chapter  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  • El-Shishtawy RM, Kawasaki S, Morimoto M (1997) Biological H2 production using a novel light-induced and diffused photoreactor. Biotechnol Tech 11(6):403–407

    Article  CAS  Google Scholar 

  • Fisher M, Pick U, Zamir A (1994) A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant Physiol 106(4):1359–1365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulks W, Main KL (1991) Rotifer and microalgae culture systems. In: Fulks W, Main KL (eds) Proceedings of a U.S.-Asia workshop, The Oceanic Institute Honolulu, Hawaii, pp 3–52

    Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761

    Article  CAS  Google Scholar 

  • Ginzburg M (1988) Dunaliella: a green alga adapted to salt. Adv Bot Res 14:93–183

    Article  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38(2):145–151

    Article  Google Scholar 

  • Hariskos I, Posten C (2014) Biorefinery of microalgae–opportunities and constraints for different production scenarios. Biotechnol J 9(6):739–752

    Article  PubMed  CAS  Google Scholar 

  • Heijnen JJ, Hols J, Van Der Lans RGJM, Van Leeuwen HLJM, Mulder A, Weltevrede R (1997) A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime. Chem Eng Sci 52(15):2527–2540

    Article  CAS  Google Scholar 

  • Hoham RW (1975) Optimum temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7:13–24

    Article  Google Scholar 

  • Hoham RW, Blinn DW (1979) Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18(2):133–145

    Article  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49(6):655–662

    Article  CAS  Google Scholar 

  • Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV (1999) Degradation of starch–poly (β-hydroxybutyrate-co-β-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iqbal M, Grey D, Stepan-Sarkissian F, Fowler MW (1993) A flat-sided photobioreactor for culturing microalgae. Aquac Eng 12(3):183–190

    Article  Google Scholar 

  • Jacobi A, Steinweg C, Sastre RR, Posten C (2012) Advanced photobioreactor LED illumination system: scale‐down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630

    Article  CAS  Google Scholar 

  • Jirka V, Šourek B, Pokorný J, Štys D, Papácek S, Masojídek J (2002) Microalgal ‘penthouse-roof’ photobioreactor based on solar concentrators-linear raster lenses. In: Renewable energy, extended abstracts of the World Renewable Energy Congress VII (WREC 2002), Cologne, Germany, 29, pp 359–360.

    Google Scholar 

  • Kol E (1969) The red snow of Greenland. II. Acta Bot Acad Sci Hung 15(3–4):281–289

    Google Scholar 

  • Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly (hydroxyalkanoate)(PHA) bio-production. Chem Biochem Eng Q 28(1):65–77

    CAS  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  CAS  Google Scholar 

  • Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly [(R)‐3‐hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Eng Life Sci 13(6):549–562

    Article  CAS  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6(A):52–63

    Article  Google Scholar 

  • Léonard A, Rooke JC, Meunier CF, Sarmento H, Descy JP, Su BL (2010) Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy Environ Sci 3(3):370–377

    Article  CAS  Google Scholar 

  • Leya T, Müller T, Ling HU, Fuhr G (2000) Taxonomy and biophysical properties of cryophilic microalgae and their environmental factors in northwest Spitsbergen, Svalbard. In: Proceedings of the 57th Eastern snow conference, Syracuse, New York, pp 199–205

    Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois‐Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    CAS  PubMed  Google Scholar 

  • Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Ling HU, Seppelt RD (1993) Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. Eur J Phycol 28(2):77–84

    Article  Google Scholar 

  • Lubián LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, González-del Valle M, Parés G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12(3–5):249–255

    Article  Google Scholar 

  • Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38

    Google Scholar 

  • Masojídek J, Sergejevová M, Rottnerová K, Jirka V, Korečko J, Kopecký J, Zaťková I, Torzillo G, Štys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21(1):55–63

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Merchuk JC, Garcia-Camacho F, Molina-Grima E (2007) Photobioreactor design and fluid dynamics. Chem Biochem Eng Q 21(4):345–355

    CAS  Google Scholar 

  • Mignot L, Junter GA, Labbe M (1989) A new type of immobilized-cell photobioreactor with internal illumination by optical fibres. Biotechnol Tech 3(5):299–304

    Article  Google Scholar 

  • Miron AS, Camacho FG, Gomez AC, Molina GE, Chisti Y (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J 46:1872–1893

    Article  CAS  Google Scholar 

  • Mitra D, van Leeuwen JH, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1(1):40–48

    Article  CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69(6):693–698

    Article  CAS  PubMed  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Ogbonna JC, Yada H, Masui H, Tanaka H (1996) A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J Ferment Bioeng 82(1):61–67

    Article  CAS  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. Prog Ind Microbiol 35:289–297

    Article  CAS  Google Scholar 

  • Ogbonna KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98(11):2207–2211

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3–5):499–506

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4):459–466

    Article  CAS  PubMed  Google Scholar 

  • Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89(2):178–195

    Article  CAS  Google Scholar 

  • Online resource 1: http://cfb.unh.edu/phycokey/Choices/Chlorophyceae/unicells/flagellated/DUNALIELLA/Dunaliella_Image_page.html

  • Online resource 2: http://algae-energy.co.uk/biofuel_production/cultivation/

  • Online resource 3: http://www.psi.cz/products/photobioreactors/download. 16 Sept 2014

  • Online resource 4: http://www.oilseedcrops.org/algae/

  • Online resource 5: http://www.algaeindustrymagazine.com/a-i-m-interview-solix-biosystems-ceo-joel-butler/

  • Online resource 6: http://www.cleanthinking.de/vattenfall-und-ecoduna-nehmen-algenzuchtanlage-in-betrieb/21608/

  • Online resource 7: http://www.hawaiibusiness.com/Hawaii-Business/October-2001/Economies-of-Scale/

  • Online resource 8: http://www.gicon.de/uploads/tx_sbdownloader/Biosolarzentrum_05.jpg

  • Patel B, Tamburic B, Zemichael FW, Dechatiwongse P, Hellgardt K (2012) Algal biofuels: a credible prospective? ISRN Renew Energy. Article ID 631574, 14 pp

    Google Scholar 

  • Phang SM, Kim-Chong O (1988) Algal biomass production in digested palm oil mill effluent. Biol Waste 25(3):177–191

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Prokop A, Řičica J (1968) Chlorella pyrenoidosa 7-11-05 in batch and in homogeneous continuous culture under autotrophic conditions. Folia Microbiol 13(5):362–372

    Article  CAS  Google Scholar 

  • Prokop A, Řičica J, Málek I, Thomas J (1967) Growth and physiological characteristics of a high temperature strain of Chlorella pyrenoidosa in continuous culture. Nature 214:1234–1235

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3):560–564

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Anthony WD, Larkum SE, Douglas JA (eds_ Photosynthesis in algae. Springer, Dordrecht, pp 225–244

    Google Scholar 

  • Ravikumar R (2014) Micro algae in open raceways. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 127–146

    Chapter  Google Scholar 

  • Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146

    Article  CAS  PubMed  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268

    Article  CAS  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5(3):327–332

    Article  Google Scholar 

  • Rodolfi L, Biondi N, Piccardi R, Ferroni P, Tredici MR (2002) Effect of temperature on growth and bioactivity of two Nostoc strains in mass culture. In: Abstracts of the 9th international conference on applied algology, 26–30 May 2002, Almeria, Spain (2002), p 21

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Šantek B, Ivančić M, Horvat P, Novak S, Marić V (2006) Horizontal tubular bioreactors in biotechnology. Chem Biochem Eng Q 20(4):389–399

    Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manag 47(6):791–799

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9(5):445–450

    Article  CAS  Google Scholar 

  • Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27(3):312–318

    Article  CAS  PubMed  Google Scholar 

  • Sierra E, Acien FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1):136–147

    Article  CAS  Google Scholar 

  • Sim TS, Goh A (1988) Ecology of microalgae in a high rate pond for piggery effluent purification in Singapore. MIRCEN J Appl Microbiol 4(3):285–297

    Article  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production–a review. Renew Sust Energ Rev 16(4):2347–2353

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Stein JR, Bisalputra T (1969) Crystalline bodies in an algal chloroplast. Can J Bot 47(2):233–236

    Article  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. 1. J Phycol 32(4):598–601

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74

    Article  Google Scholar 

  • Travieso L, Hall DO, Rao KK, Benıtez F, Sánchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeterior Biodegrad 47(3):151–155

    Article  CAS  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford/Ames/Carlton, pp 178–214

    Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR, Zittelli GC, Benemann JR (1998) A tubular integral gas exchange photobioreactor for biological hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 391–401

    Google Scholar 

  • Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22:383–387

    Article  Google Scholar 

  • Tsygankov AA, Hall DO, Liu J, Rao KK (1998) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 431–440

    Google Scholar 

  • Uggetti E, Sialve B, Trably E, Steyer JP (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin 8(4):516–529

    Article  CAS  Google Scholar 

  • Velea S, Ilie L, Stepan E, Chiurtu R (2014) New photobioreactor design for enhancing the photosynthetic productivity of Chlorella homosphaera culture. Rev Chim Bucharest 65(1):56–60

    CAS  Google Scholar 

  • Vona V, Di Martino RV, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163(2):325–331

    Article  CAS  Google Scholar 

  • Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6(2):349–371

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912

    Article  CAS  PubMed  Google Scholar 

  • Willson B (2009) The Solix AGS system: a low-cost photobioreactor system for production of biofuels from microalgae. IOP Conf Ser Earth Environ Sci 6:192015. doi:10.1088/1755-1307/6/9/192015

  • Yamaoka T, Satoh K, Katoh S (1978) Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol 19(6):943–954

    CAS  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25(2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145(2):316–327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller .

Editor information

Editors and Affiliations

List of Abbreviations and Symbols

List of Abbreviations and Symbols

CAPEX:

Capital Expenditure (Investment cost)

CDM:

Cell dry mass

CFD:

Computational fluid dynamics

CFU:

Colony forming unit

D:

Dilution rate

E:

Einstein (1 Mol of photons)

kLa:

Oxygen mass transfer coefficient

μ:

specific growth rate [1/h]

μmax. :

maximum specific growth rate [1/h]

μE/m2s:

Mikroeinstein per square meter and second

PE:

Poly(ethylene)

PBR:

Photobioreactor

PCL:

Poly(ε-caprolactone)

PET:

Poly(ethyleneterephtalate)

PHA:

Poly(hydroxyalkanoate)

PLA:

Poly(lactate)

PMMA:

Poly(methylmetacrylate)

PUFAs:

Polyunsaturated fatty acids

PVC:

Poly(vinyl chloride)

STR:

Stirred tank reactor

vvm:

volume per volume and minutes

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koller, M. (2015). Design of Closed Photobioreactors for Algal Cultivation. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_4

Download citation

Publish with us

Policies and ethics