Skip to main content

Microalgal Heterotrophic and Mixotrophic Culturing for Bio-refining: From Metabolic Routes to Techno-economics

  • Chapter

Abstract

In comparison with conventional photo-autotrophic cultivation, heterotrophic and mixotrophic cultivations of microalgae offers a feasible strategy to produce biomass and valuable chemicals through biorefinery processes. Supplementing microalgae cultures with organic carbon sources increase the biomass production and lipid/carbohydrate contents in cells. Consequently, this yields high productivity of biorefined products such as biodiesel, ethanol, starch and polyunsaturated fatty acids. Nevertheless, the addition of an organic carbon source imposes the necessity to pre-produce them and increase the cost and susceptibility of the cultures to microbial contamination. This chapter reviews the aspects related to the heterotrophic and mixotrophic cultivation of microalgae. These include advantages and limitations, metabolic routes of organic carbon assimilation, alternative carbon sources and main considerations for cultivation systems. It provides a comprehensive review of cultivated species, organic carbon sources and recently achieved productivity metrics. The chapter includes discussions regarding the main commercial products obtained using these cultivation modes and a simplified techno-economic analysis of the full biorefinery operation. The overarching aim of the chapter was to depict the main challenges for commercialization of chemical products using heterotrophic/mixotrophic cultivation of microalgae and identifies the promising research lines to achieve the same.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrade MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134

    Article  Google Scholar 

  • Aubert S, Gout E, Bligny R, Douce R (1994) Multiple effects of glycerol on plant cell metabolism. Phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 269:21420–21427

    CAS  PubMed  Google Scholar 

  • Barclay W, Apt K (2013) Strategies for bioprospecting microalgae for potential commercial applications. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester, pp 69–79

    Chapter  Google Scholar 

  • Barclay W, Apt K, Dong XD (2013) Commercial production of microalgae via fermentation. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester, pp 134–145

    Chapter  Google Scholar 

  • Bassi A, Saxena P, Aguirre AM (2014) Mixotrophic algae cultivation for energy production and other applications. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York, pp 177–202

    Chapter  Google Scholar 

  • Behrens PW (2005) Photobioreactor and fermentors: the light and the dark sides of the growing algae. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, New York, pp 189–203

    Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O (2012) Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 3:1214

    Article  PubMed  CAS  Google Scholar 

  • Bollman RC, Robinson GGC (1977) The kinetics of organic acid uptake by three Chlorophyta in axenic culture. J Phycol 13:1–5

    CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4. doi:10.1186/1752-0509-3-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brányiková I, Marsálková B, Doucha J, Brányik T, Bisová K, Zachleder V, Vitova M (2011) Microalgae – novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Article  CAS  PubMed  Google Scholar 

  • Carney LT, Reinsch SS, Lane PD, Solberg OD, Jansen LS, Williams KP, Trent JD, Lane TW (2014) Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res 4:52–61

    Article  Google Scholar 

  • Cha TS, Chen JW, Goh EG, Aziz A, Loh SH (2011) Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresour Technol 102:10633–10640

    Article  CAS  PubMed  Google Scholar 

  • Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518. doi:10.1038/msb.2011.52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Charles DF, Knowles D, Davis RS (2002) Protocols for the analysis of algal samples collected as part of the U.S. Geological Survey National Water-Quality Assessment Program. Report No. 02–06, Philadelphia

    Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    Article  CAS  Google Scholar 

  • Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009a) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuel 23:4166–4173

    Article  CAS  Google Scholar 

  • Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009b) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781

    Article  CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012a) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme Microb Technol 51:300–309

    Article  CAS  PubMed  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012b) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzyme Microb Technol 51:294–299

    Article  CAS  PubMed  Google Scholar 

  • Choix FJ, Bashan Y, Mendoza A, de-Bashan LE (2014) Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol 177:22–34

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha F (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 4:21–34

    Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680

    Article  CAS  PubMed  Google Scholar 

  • Cruz I, Bashan Y, Hernandez-Carmona G, de-Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858

    Article  CAS  PubMed  Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol 38:245–249

    Article  Google Scholar 

  • De Swaaf ME, Sijtsma L, Pronk JT (2003a) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  PubMed  CAS  Google Scholar 

  • De Swaaf ME, Pronk JT, Sijtsma L (2003b) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002a) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 48:514–521

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002b) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez J-P, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2005) Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 54:197–203

    Article  CAS  PubMed  Google Scholar 

  • Dorian PM (1995) Bioprocess engineering principles. Academic, London

    Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 530–559

    Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silvera PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson B, Nelson WP (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    Article  CAS  Google Scholar 

  • García-Ferris C, De Los RA, Ascaso C, Moreno J (1996) Correlated biochemical and ultrastructural changes in nitrogen-starved Euglena gracilis. J Phycol 32:953–963

    Article  Google Scholar 

  • Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341

    Article  Google Scholar 

  • Girard J, Roy M, Hafsa MB, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes J (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Göksan T, Ak I, Gökpinar S (2010) An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae). J Microbiol Biotechnol 20:1276–1282

    Article  PubMed  CAS  Google Scholar 

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DJ, Thresher CL, Street HE (1960) The heterotrophic nutrition of Chlorella vulgaris (brannon no. 1 strain): with two figures in the text. Ann Bot 24:1–11

    CAS  Google Scholar 

  • Hawkins RL (1999) Utilization of xylose for growth by the eukaryotic alga, Chlorella. Curr Microbiol 38:360–363

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Google Scholar 

  • Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalgae Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Technol 38:190–198

    Article  CAS  Google Scholar 

  • Hillebrand H, Sommer U (1999) The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnol Oceanogr 44:440–446

    Article  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  • Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173

    Article  CAS  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Min M, Zhou W, Li Y, Mohr M, Cheng Y, Lei H, Liu Y, Lin X, Chen P, Ruan R (2012) Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl Biochem Biotechnol 166:1661–1673

    Google Scholar 

  • Hu B, Zhou W, Min M, Du Z, Chen P, Ma X, Liu Y, Lei H, Shi J, Ruan R (2013) Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Appl Energy 107:255–263

    Article  CAS  Google Scholar 

  • Hudek KL, Davis LC, Ibbini J, Erickson LE (2014) Commercial products from algae. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York, pp 275–295

    Chapter  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. Database website: http://www.genome.jp/kegg/

  • Kang R, Wang J, Shi D, Cong W, Cai Z, Ouyang F (2004) Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) Effect of phosphate starvation on lipid and fatty acid composition of the eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  CAS  PubMed  Google Scholar 

  • Koide T, Lee Pang W, Baliga NS (2009) The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Microbiol 7:297–305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kröger M, Müller-Langer F (2011) Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels. Biofuels 2:145–151

    Article  CAS  Google Scholar 

  • Lebsky VK, Gonzalez-Bashan LE, Bashan Y (2001) Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  CAS  Google Scholar 

  • Leyva LA, Bashan Y, Mendoza A, de-Bashan LE (2014) Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften 101:819–830

    Article  CAS  PubMed  Google Scholar 

  • Leyva LA, Bashan Y, de-Bashan LE (2015) Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilized with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann Microbiol 65:339–349.

    Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2012) Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoides cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng 109:2222–2229

    Article  CAS  PubMed  Google Scholar 

  • Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Lloyd D (1974) Dark respiration. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 505–529

    Google Scholar 

  • Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22:573–578

    Article  CAS  Google Scholar 

  • Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410

    Article  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments and arachidonic acid content of the unicellular green alga Parietochloris incisa (trebouxiophyceae) chlorophyta. J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Fernández FGA, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi E, Fernández FGA, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Nwabueze TU (2010) Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. Int J Food Sci Technol 45:1768–1776

    Article  CAS  Google Scholar 

  • Oberhardt MA, Chavali AK, Papin JA (2009) Flux balance analysis: interrogating genome-scale metabolic networks. Method Mol Biol 500:61–80

    Article  CAS  Google Scholar 

  • OECD (2011) Future prospects for industrial biotechnology. OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264126633-en

    Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagnanelli F, Altimari P, Trabucco F, Toro L (2014) Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: interaction between glucose and nitrate. J Chem Technol Biotechnol 89:652–661

    Article  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348

    Article  CAS  Google Scholar 

  • Perez-Garcia O, de-Bashan LE, Hernandez J, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol 46:800–812

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011a) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011b) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Villas-Boas SG, Swift S, Chandran K, Singhal N (2014) Clarifying the regulation of NO/N2O production in Nitrosomonas europaea during anoxic–oxic transition via flux balance analysis of a metabolic network model. Water Res 60:267–277

    Google Scholar 

  • Pipes WO, Gotaas HB (1960) Utilization of organic matter by Chlorella grown in sewage. Appl Microbiol 8:163–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686. doi:10.1038/ncomms1688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1976) The quantitative role of ‘dark’ respiratory processes in heterotrophic and photolithotrophic plant growth. Ann Bot 40:587–602

    CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Richmond A (1986) Cell response to environmental factors. In: Richmond A (ed) Handbook for microalgal mass culture. CRC Press, Boca Raton, pp 69–99

    Google Scholar 

  • Robertson DE, Jacobson SA, Morgan F, Berry D, Church GM, Afeyan NB (2011) A new dawn for industrial photosynthesis. Photosynth Res 107:269–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9:e92460. doi:10.1371/journal.pone.009246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A look back a the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from algae. U.S. Department of Energy, Golden, CO. Report No. NREL/TP-580-24190

    Google Scholar 

  • Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA (2014) Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci 14:47–56

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  • Tabernero A, Martín del Valle EM, Galán MA (2012) Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: scale-up and economics. Biochem Eng J 63:104–115

    Article  CAS  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5,578,472

    Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Article  CAS  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Res 36:4185–4192

    Article  CAS  PubMed  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    Article  CAS  Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chu J, Zhuang Y, Wang Y, Xia J, Zhang S (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27:989–995

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang H, Wang F (2014) Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 172:3307–3329

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295

    Article  CAS  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  PubMed  Google Scholar 

  • Wiley PE, Harris L, Reinsch SS, Tozzi S (2013) Microalgae cultivation using offshore membrane enclosures for growing algae. J Sustain Bioenergy Syst 3:18–32

    Article  Google Scholar 

  • Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Lu Y, Chen Y, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2002) Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol 58:813–822

    Article  CAS  PubMed  Google Scholar 

  • Yen HW, Chang JT (2013) A two-stage cultivation process for the growth enhancement of Chlorella vulgaris. Bioprocess Biosyst Eng 36:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:91. doi:10.1186/1475-2859-10-91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Chen F, Johns MR (1999) Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures. Process Biochem 35:385–389

    Article  CAS  Google Scholar 

  • Zhang TY, Wu YH, Zhu SF, Li FM, Hu HY (2013a) Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition. Bioresour Technol 149:586–589

    Article  CAS  PubMed  Google Scholar 

  • Zhang XL, Yan S, Tyagi RD, Surampalli RY (2013b) Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sustain Energy Rev 26:216–223

    Article  CAS  Google Scholar 

  • Zhang K, Sun B, She X, Zhao F, Cao Y, Ren D, Lu J (2014) Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Ann Microbiol 64:1239–1246

    Article  CAS  Google Scholar 

  • Zheng Y, Chi Z, Lucker B, Chen S (2012) Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol 103:484–488

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6:3765–3779

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Ira Fogel of CIBNOR Mexico for editing the manuscript. Time for writing was provided by The Bashan Foundation, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan .

Editor information

Editors and Affiliations

Acronyms List

Acronyms List

μ max :

Maximum growth rate

BOD:

Biological oxygen demand

C/N:

Carbon to nitrogen ratio of growth media

CCD:

Central composite design

COD:

Chemical oxygen demand

DHA:

Docosahexaenoic acid

EC:

Enzyme commission numer

EM pathway:

Embden-Meyerhof pathway

EPA:

Eicosapentaenoic acid

FBA:

Flux balance analysis

HRT:

Hydraulic retention time

LEDs:

Light-emitting diodes

mRNA:

Messenger RNA

OMEGA:

Offshore Membrane Enclosures for Growing Algae

PCR:

Polymerase chain reaction

PP pathway:

Pentose phosphate pathway

PUFAs:

Polyunsaturated fatty acids

SMN:

Stoichiometric metabolic network

STR:

Stirred tank bioreactor

TCA cycle:

Tricarboxylic acid cycle

VSS:

Dissolved volatile solids

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perez-Garcia, O., Bashan, Y. (2015). Microalgal Heterotrophic and Mixotrophic Culturing for Bio-refining: From Metabolic Routes to Techno-economics. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_3

Download citation

Publish with us

Policies and ethics