Skip to main content

Microalgal-Derived Biomethanization and Biohydrogen Production – A Review of Modeling Approaches

  • Chapter
Algal Biorefineries

Abstract

Microalgae represent an excellent example of the pressing need of our society for sustainable energy as they have experienced increased momentum of interest as a promising feedstock for biomethane and biohydrogen production. While biomethane can be obtained from various microalgal species, biohydrogen production mostly involves the single-cell green alga Chlamydomonas reinhardtii. In this context, it is of general agreement in science that the development of mathematical models supports the understanding of the biochemical processes involved besides helping to optimize the process engineering. This chapter reviews the approaches to mathematically model processes of microalgal-derived biomethanization and biohydrogen production. Regarding biomethanization a standardized model framework exists in the form of the Anaerobic Digestion Model No. 1 (ADM1), which has been developed on an ongoing basis. In the context of anaerobic digestion of microalgae, studies available regarding the application of the ADM1 focus entirely on the improvement of kinetic description (Contois) and on a closer consideration of the effect of salinity for marine cultures. Future attention will certainly be given to a detailed determination of stoichiometric model parameters for microalgae as has already been done for other substrates. Besides the ADM1, there are hardly any other modeling approaches published to date for modeling microalgal digestion. Though biohydrogen production, on the contrary, is subject to a wider variety of modeling approaches, a standardized model framework has not yet been distilled from the majority of available models. However, a uniform trend is clearly seen in the application of the S-system modeling framework with further modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83(1):17–20

    Article  CAS  Google Scholar 

  • Arditi R, Ginzburg LR (2012) How species interact. Altering the standard view on trophic ecology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Batie CJ, Kamin H (1984) Electron transfer by ferredoxin: NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J Biol Chem 259(19):11976–11985

    CAS  PubMed  Google Scholar 

  • Batstone DJ (2002) Anaerobic digestion model no. 1 (ADM1). Scientific & technical report, vol 13. IWA Publishing, London

    Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  PubMed  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145(1):79–99

    Article  CAS  Google Scholar 

  • Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrog Energy 36(19):12211–12219

    Article  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16(3):1462–1476

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhao X, Yen H, Ho S, Cheng C, Lee D, Bai F, Chang J (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71(10):6199–6205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fouchard S, Pruvost J, Degrenne B, Titica M, Legrand J (2009) Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii Part I. Model development and parameter identification. Biotechnol Bioeng 102(1):232–245

    Article  CAS  PubMed  Google Scholar 

  • Fowden L (1952) The effect of age on the bulk protein composition of Chlorella vulgaris. Biochem J 52(2):310–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geider R, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37(1):1–17

    Article  Google Scholar 

  • Ghysels B, Godaux D, Matagne RF, Cardol P, Franck F, Subramanyam R (2013) Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis. PLoS ONE 8(5), e64161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girault R, Bridoux G, Nauleau F, Poullain C, Buffet J, Steyer J, Sadowski AG, Béline F (2012) A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res 46(13):4099–4110

    Article  CAS  PubMed  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer J (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod Biorefin 6(2):205–218

    Article  Google Scholar 

  • Guan Y, Deng M, Yu X, Zhang W (2004a) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19(1):69–73

    Article  CAS  Google Scholar 

  • Guan Y, Zhang W, Deng M, Jin M, Yu X (2004b) Significant enhancement of photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnol Lett 26(13):1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Hierholtzer A, Akunna JC (2014) Modelling start-up performance of anaerobic digestion of saline-rich macro-algae. Water Sci Technol 69(10):2059

    Article  CAS  PubMed  Google Scholar 

  • Horner J (2002) A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii. Int J Hydrog Energy 27(11–12):1251–1255

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol 162(1):208–220

    Article  CAS  PubMed  Google Scholar 

  • Jimenez J, Gonidec E, Rivero C, Andrés J, Latrille E, Vedrenne F, Steyer J (2014) Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res 50:359–372

    Article  CAS  PubMed  Google Scholar 

  • Jo JH, Lee DS, Park JM (2006) Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol Prog 22(2):431–437

    Article  CAS  PubMed  Google Scholar 

  • Jorquera O, Kiperstok A, Sales E, Embirucu M, Ghirardi M (2008) S-systems sensitivity analysis of the factors that may influence hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy 33(9):2167–2177

    Article  CAS  Google Scholar 

  • Kamat PV, Bisquert J (2013) Solar fuels. Photocatalytic hydrogen generation. J Phys Chem C 117(29):14873–14875

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Kennes C (ed) (2013) Air pollution prevention and control. Wiley, Chichester

    Google Scholar 

  • Khairy HM (2011) Comparative effects of autotrophic and heterotrophic growth on some vitamins, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, amino acids and protein profile of Chlorella vulgaris Beijerinck. Afr J Biotechnol 10(62):13514–13519

    CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht M (2006a) Critical analysis of some concepts proposed in ADM1. Water Sci Technol 54(4):51

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem R, van Loosdrecht M (2006b) Waste characterization for implementation in ADM1. Water Sci Technol 54(4):167

    Article  CAS  PubMed  Google Scholar 

  • Koch K, Wichern M, Lübken M, Horn H (2009) Mono fermentation of grass silage by means of loop reactors. Bioresour Technol 100(23):5934–5940

    Article  CAS  PubMed  Google Scholar 

  • Kojima E, Lin B (2004) Effect of partial shading on photoproduction of hydrogen by Chlorella. J Biosci Bioeng 97(5):317–321

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78(7):731–740

    Article  CAS  PubMed  Google Scholar 

  • Koster IW, Lettinga G (1984) The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agric Wastes 9(3):205–216

    Article  CAS  Google Scholar 

  • Lauwers J, Appels L, Thompson IP, Degrève J, Impe V, Jan F, Dewil R (2013) Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations. Prog Energy Combust Sci 39(4):383–402

    Article  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Levin D (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  • Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41(18):4085–4096

    Article  PubMed  Google Scholar 

  • Lübken M, Gehring T, Wichern M (2010) Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85(6):1643–1652

    Article  PubMed  Google Scholar 

  • Mairet F, Bernard O, Ras M, Lardon L, Steyer J (2011) Modeling anaerobic digestion of microalgae using ADM1. Bioresour Technol 102(13):6823–6829

    Article  CAS  PubMed  Google Scholar 

  • Mairet F, Bernard O, Cameron E, Ras M, Lardon L, Steyer J, Chachuat B (2012) Three-reaction model for the anaerobic digestion of microalgae. Biotechnol Bioeng 109(2):415–425

    Article  CAS  PubMed  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nopharatana A, Pullammanappallil PC, Clarke WP (2007) Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27(5):595–603

    Article  CAS  PubMed  Google Scholar 

  • Park W, Moon I (2007) A discrete multi states model for the biological production of hydrogen by phototrophic microalga. Biochem Eng J 36(1):19–27

    Article  CAS  Google Scholar 

  • Posewitz MC (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16(8):2151–2163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12(4):247–257

    Article  CAS  PubMed  Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer J (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102(1):200–206

    Article  CAS  PubMed  Google Scholar 

  • Savageau MA (1969a) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25(3):365–369

    Article  CAS  PubMed  Google Scholar 

  • Savageau MA (1969b) Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25(3):370–379

    Article  CAS  PubMed  Google Scholar 

  • Savageau MA (1976) Biochemical systems analysis. A study of function and design in molecular biology. Advanced book program. Addison-Wesley, London

    Google Scholar 

  • Schwede S, Kowalczyk A, Gerber M, Span R (2013) Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresour Technol 148:428–435

    Article  CAS  PubMed  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  PubMed  Google Scholar 

  • Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36(5):1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Sötemann SW, van Rensburg P, Ristow NE, Wentzel MC, Loewenthal RE, Ekama GA (2006) Integrated chemical, physical and biological processes modelling of anaerobic digestion of sewage sludge. Water Sci Technol 54(5):109–117

    Article  PubMed  Google Scholar 

  • Vargas J, Mariano AB, Corrêa DO, Ordonez JC (2014) The microalgae derived hydrogen process in compact photobioreactors. Int J Hydrog Energy 39(18):9588–9598

    Article  CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28(6):939–951

    Article  CAS  PubMed  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5(10):204–214

    Article  Google Scholar 

  • Wichern M, Gehring T, Fischer K, Andrade D, Lübken M, Koch K, Gronauer A, Horn H (2009) Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresour Technol 100(4):1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92(5):909–919

    Article  CAS  PubMed  Google Scholar 

  • Williams CR, Bees MA (2014) Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii. Biotechnol Bioeng 111(2):320–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117(1):129–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan X, Shi X, Yuan C, Wang Y, Qiu Y, Guo R, Wang L (2014) Modeling anaerobic digestion of blue algae: stoichiometric coefficients of amino acids acidogenesis and thermodynamics analysis. Water Res 49:113–123

    Article  CAS  PubMed  Google Scholar 

  • Yun Y, Jung K, Kim D, Oh Y, Shin H (2012) Microalgal biomass as a feedstock for bio-hydrogen production. Int J Hydrog Energy 37(20):15533–15539

    Article  CAS  Google Scholar 

  • Zhang T (2011) Dynamics modeling of hydrogen production by sulfur-deprived Chlamydomonas reinhardtii culture in tubular photobioreactor. Int J Hydrog Energy 36(19):12177–12185

    Article  CAS  Google Scholar 

  • Zhang T (2012) Advection–diffusion constrained metabolic reaction in bioreactor analysis for hydrogen production. Biomass Bioenergy 47:324–333

    Article  CAS  Google Scholar 

  • Zhang T (2013) Effects of fluid and light dynamics on H2 production in a mechanically stirred photobioreactor. Bioresour Technol 146:70–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Melis A (2002) Probing green algal hydrogen production. Philos Trans Royal Soc B: Biol Sci 357(1426):1499–1509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Kosse .

Editor information

Editors and Affiliations

List of Acronyms

List of Acronyms

ADM1:

Anaerobic Digestion Model No. 1

ADRE:

Advective-Diffusive Reaction Equation

Alk:

Alkalinity

AlkIC :

Bicarbonate alkalinity

AlkVFA :

Alkalinity of neutralized fatty acids

ATP:

Adenosine triphosphate

ChVFA :

Charge of volatile fatty acids

COD:

Chemical Oxygen Demand

CODCHO :

COD-equivalent carbohydrate concentration

CODLIP :

COD-equivalent lipid concentration

CODPR :

COD-equivalent protein concentration

CODVFA :

COD-equivalent volatile fatty acid concentration

ETS:

Electron Transport System

Fd:

Ferredoxin

FNR:

Fd-NADP+ reductase

HRT:

Hydraulic retention time

MAD:

Microalgae Anaerobic Digestion model

MWO2 :

Molecular weight of oxygen

Norg :

Organic nitrogen

NPR :

Nitrogen content of protein

PQ:

Plastoquinone

PSI:

photosynthetic system I

PSII:

photosynthetic system II

TOC:

Total Organic Carbon

γLIP :

Oxidation state of lipids

ηCHO:

Carbon mole fraction of carbohydrates

ηLIP:

Carbon mole fraction of lipids

ηPR:

Carbon mole fraction of proteins

ηVFA:

Carbon mole fraction of volatile fatty acids

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kosse, P., Wichern, M., Lübken, M. (2015). Microalgal-Derived Biomethanization and Biohydrogen Production – A Review of Modeling Approaches. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_14

Download citation

Publish with us

Policies and ethics