Skip to main content

Microalgal Systems Biology for Biofuel Production

  • Chapter
Algal Biorefineries

Abstract

In recent years, microalgae has received a lot of attention as potential sources of renewable energy, especially given the increase in oil prices and environmental concerns. Therefore, microalgal systems biology can shed light on complex interactions in biological systems through integration of various omics data. Genome-scale metabolic reconstruction can provide insights into cellular metabolism and species-specific adaptive features, whereas in silico analysis is a powerful tool for analysis of metabolic flux and identification of gene targets for enhanced production of biofuel precursors. Here, we highlight the current state of research in microalgal systems biology and evaluate the potential for future sustainable microalgae-based biofuel engineering and development of “green cell factories.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Miyake K, Nakamura M, Kojima K, Ferri S, Ikebukuro K, Sode K (2014) Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803. Microb Biotechnol 7(2):177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altuntaş E, Schubert US (2014) “Polymeromics”: mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Anal Chim Acta 808:56–69

    Article  PubMed  Google Scholar 

  • An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, Zhang W, Miao J (2013) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev biotech 22(3):245–279

    Article  CAS  Google Scholar 

  • Battchikova N, Vainonen JP, Vorontsova N, Keränen M, Carmel D, Aro E-M (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res 9 (11):5896–5912

    Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13(5):R39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S (2013) Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. New Phytol 199(3):650–662

    Article  CAS  PubMed  Google Scholar 

  • Bogen C, Klassen V, Wichmann J, Russa ML, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2012) Species and strain selection. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy, vol 5. Springer Netherlands, pp 77–89

    Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287(19):15811–15825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli EC, Telatin A, Vitulo N, Forcato C, D’Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G (2014) Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant 7(2):323–335

    Article  Google Scholar 

  • Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7(1):518

    Article  PubMed Central  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Courant F, Martzolff A, Rabin G, Antignac J-P, Le Bizec B, Giraudeau P, Tea I, Akoka S, Couzinet A, Cogne G (2013) How metabolomics can contribute to bio-processes: a proof of concept study for biomarkers discovery in the context of nitrogen-starved microalgae grown in photobioreactors. Metabolomics 9(6):1286–1300

    Article  CAS  Google Scholar 

  • Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5. doi:10.1038/ncomms4831

  • de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus:(I) mutant generation and characterization. Biotechnol Biofuels 7:69

    Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103(31):11647–11652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong H-P, Williams E, D-z W, Xie Z-X, R-c H, Jenck A, Halden R, Chen F, Place A (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 113:214–320

    Google Scholar 

  • Edwards JS, Palsson BO (2000) Robustness analysis of the Escherichiacoli metabolic network. Biotechnol Prog 16(6):927–939

    Article  CAS  PubMed  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130

    Article  CAS  PubMed  Google Scholar 

  • Edwards JS, Ramakrishna R, Palsson BO (2002) Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng 77(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJ (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner–Doudoroff glycolytic pathway. Plant J 70(6):1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585(12):1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Francisco EC, Neves DB, Jacob‐Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotech 85(3):395–403

    Article  CAS  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, Herjolfsson G, Brynjolfsson S, Palsson BØ (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol 161(3):242–249

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6(10):e25851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Yang S, Pienkos PT (2013) Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteomics 93:245–253

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48(5):1057–1063

    Article  Google Scholar 

  • Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Hillen L, Pollard G, Wake L, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24(1):193–205

    Article  CAS  PubMed  Google Scholar 

  • Hong S-J, Lee C-G (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12(2):165–173

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  • Hyduke DR, Lewis NE, Palsson BØ (2013) Analysis of omics data with genome-scale models of metabolism. Mol BioSyst 9(2):167–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • KEGG: Kyoto Encyclopedia of genes and genomes http://www.genome.jp/kegg/

  • Kim S-H, Liu K-H, Lee S-Y, Hong S-J, Cho B-K, Lee H, Lee C-G, Choi H-K (2013) Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One 8(9):e72415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Kotera M, Tabei Y, Yamanishi Y, Tokimatsu T, Goto S (2013) Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets. Bioinformatics 29(13):i135–i144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7(2):140–150

    Article  PubMed  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5(1):1–11

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois‐Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yuan Z, Mu J, Chen D, Feng B (2013) Proteomic analysis of lipid accumulation in Chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energy Fuel 27(7):4031–4040

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Curtiss R (2009) Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 106(51):21550–21554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Sheng J, Curtiss R III (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JEW (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22

    Article  PubMed  Google Scholar 

  • Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, Berger B, Galagan JE, Church GM (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5(1):296

    Google Scholar 

  • Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6(8):589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280

    Article  CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10(6):515–525

    Article  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*. BMC Genomics 13(1):576

    Article  PubMed Central  PubMed  Google Scholar 

  • Montagud A, Zelezniak A, Navarro E, de Córdoba PF, Urchueguía JF, Patil KR (2011) Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J 6(3):330–342

    Article  CAS  PubMed  Google Scholar 

  • Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D (2013) Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res 118(1–2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Cuiné S, Beyly-Adriano A, Légeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y (2013) The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol 163(2):914–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109(7):2678–2683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104(18):7705–7710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palsson BO (2006a) Introduction. In: Palsson BO (ed) Systems biology. Cambridge University Press, New York

    Chapter  Google Scholar 

  • Palsson BO (2006b) Metabolic networks. In: Palsson BO (ed) Systems biology. Cambridge University Press, New York

    Chapter  Google Scholar 

  • Parry M, Andralojc P, Mitchell RA, Madgwick P, Keys A (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54(386):1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54(4):255–259

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12(1):148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4(1):45

    Article  PubMed Central  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Saha R, Chowdhury A, Maranas CD (2014) Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 29:39–45

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sengupta T, Bhushan M, Wangikar PP (2013) Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynth Res 118(1–2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553

    Article  CAS  Google Scholar 

  • Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21(6):1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13(1):499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (2013) Systems-integration of plant metabolism: means, motive and opportunity. Curr Opin Plant Biol 16(3):381–388

    Article  CAS  PubMed  Google Scholar 

  • Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110(49):19748–19753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanee N, Brooks JP, Spicer V, Shamshurin D, Krokhin O, Wilkins JA, Deng Y, Fong SS (2014) Proteomics-based metabolic modeling and metabolic characterization of the cellulolytic bacterium Thermobifida fusca. BMC Syst Biol 8(1):86

    Article  PubMed Central  PubMed  Google Scholar 

  • Varma A, Palsson BO (1993a) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165(4):477–502

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Palsson BO (1993b) Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J Theor Biol 165(4):503–522

    Article  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  Google Scholar 

  • Winkler U, Säftel W, Stabenau H (1988) β-Oxidation of fatty acids in algae: localization of thiolase and acyl-CoA oxidizing enzymes in three different organisms. Planta 175(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Winter G, Krömer JO (2013) Fluxomics–connecting ‘omics analysis and phenotypes. Environ Microbiol 15(7):1901–1916

    Article  CAS  PubMed  Google Scholar 

  • Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324(5924):268–272

    Article  CAS  PubMed  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol 130:731–738

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6(2):87–102

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-K, Niu Y-F, Ma Y-H, Xue J, Zhang M-H, Yang W-D, Liu J-S, Lu S-H, Guan Y, Li H-Y (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6(67):1–67

    PubMed Central  PubMed  Google Scholar 

  • Yang Z-K, Ma Y-H, Zheng J-W, Yang W-D, Liu J-S, Li H-Y (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26(1):73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee .

Editor information

Editors and Affiliations

List of Abbreviations

List of Abbreviations

ACP:

Acyl carrier protein

BOF:

Biomass object function

C3:

Three-carbon

CFPP:

Cold filter plugging point

CoA:

Coenzyme A

ER:

Endoplasmic reticulum

FBA:

Flux balance analysis

GPR:

Gene-protein-reaction

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

IPP:

Isopentenyl diphosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate

MVA:

Mevalonate

PGA:

3-phosphoglyceric acid

PhPP:

Phenotype phase plane analysis

RACE:

Rapid amplification of cDNA ends

RubisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TAG:

Triacylglycerol

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hong, SJ., Lee, CG. (2015). Microalgal Systems Biology for Biofuel Production. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_1

Download citation

Publish with us

Policies and ethics