Skip to main content

Finite Dimensional Dynamical Sampling: An Overview

  • Chapter
Excursions in Harmonic Analysis, Volume 4

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Dynamical sampling is an emerging paradigm for studying signals that evolve in time. In this chapter we present many of the available results pertaining to dynamical sampling in the finite dimensional setting. We also provide a brief survey of the latest results in the infinite dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Aceska, S. Tang, Dynamical sampling in hybrid shift invariant spaces, in  Operator Methods in Wavelets, Tilings, and Frames, ed. by V. Furst, K.A. Kornelson, E.S. Weber. Contemporary Mathematics, vol. 626 (American Mathematical Society, Providence, RI, 2014)

    Google Scholar 

  2. R. Aceska, A. Aldroubi, J. Davis, A. Petrosyan, Dynamical sampling in shift invariant spaces, in  Commutative and Noncommutative Harmonic Analysis and Applications, ed. by A. Mayeli, A. Iosevich, P.E.T. Jorgensen, G. Ólafsson. Contemporary Mathematics, vol. 603 (American Mathematical Society, Providence, RI, 2013), pp. 139–148

    Google Scholar 

  3. E. Acosta-Reyes, A. Aldroubi, I. Krishtal, On stability of sampling-reconstruction models. Adv. Comput. Math.  31, 5–34 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev.  43, 585–620 (2001) (electronic)

    Google Scholar 

  5. A. Aldroubi, I. Krishtal, Robustness of sampling and reconstruction and Beurling-Landau-type theorems for shift-invariant spaces. Appl. Comput. Harmon. Anal.  20, 250–260 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Aldroubi, I. Krishtal, Krylov subspace methods in dynamical sampling (2015). ArXiv:1412.1538

    Google Scholar 

  7. A. Aldroubi, J. Davis, I. Krishtal, Dynamical sampling: time-space trade-off. Appl. Comput. Harmon. Anal.  34, 495–503 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Aldroubi, J. Davis, I. Krishtal, Exact reconstruction of spatially undersampled signals in evolutionary systems. J. Fourier Anal. Appl.  21(1), 11–31 (2015). doi:10.1007/s00041-014-9359-9. ArXiv:1312.3203

    Google Scholar 

  9. A. Aldroubi, C. Cabrelli, U. Molter, S. Tang, Dynamical sampling (2015). ArXiv:1409.8333

    Google Scholar 

  10. R.F. Bass, K. Gröchenig, Relevant sampling of band-limited functions. Illinois J. Math.  57, 43–58 (2013)

    MATH  MathSciNet  Google Scholar 

  11. J.J. Benedetto, P.J.S.G. Ferreira (eds.),  Modern Sampling Theory. Applied and Numerical Harmonic Analysis (Birkhäuser Boston Inc., Boston, 2001)

    Google Scholar 

  12. T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, L. Coulot, Sparse sampling of signal innovations. IEEE Signal Process. Mag.  25, 31–40 (2008)

    Article  Google Scholar 

  13. E.J. Candès, C. Fernandez-Granda, Super-resolution from noisy data. J. Fourier Anal. Appl.  19, 1229–1254 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Davis, Dynamical sampling with a forcing term, in  Operator Methods in Wavelets, Tilings, and Frames, ed. by V. Furst, K.A. Kornelson, E.S. Weber. Contemporary Mathematics, vol. 626 (American Mathematical Society, Providence, RI, 2014)

    Google Scholar 

  15. A.G. Garcia, J.M. Kim, K.H. Kwon, G.J. Yoon, Multi-channel sampling on shift-invariant spaces with frame generators. Int. J. Wavelets Multiresolution Inf. Process.  10, 1250003, 20 pp (2012)

    Google Scholar 

  16. D. Han, M.Z. Nashed, Q. Sun, Sampling expansions in reproducing kernel Hilbert and Banach spaces. Numer. Funct. Anal. Optim.  30, 971–987 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. J.A. Hogan, J.D. Lakey,  Duration and Bandwidth Limiting. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2012)

    Book  MATH  Google Scholar 

  18. P.E.T. Jorgensen, A sampling theory for infinite weighted graphs. Opuscula Math.  31, 209–236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Liang, J. Du, H. Liu, Spatiotemporal super-resolution reconstruction based on robust optical flow and Zernike moment for video sequences. Math. Probl. Eng. 14 pp. (2013). Art. ID 745752

    Google Scholar 

  20. Y. Lyubarskiĭ, W.R. Madych, The recovery of irregularly sampled band limited functions via tempered splines. J. Funct. Anal.  125, 201–222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. M.Z. Nashed, Q. Sun, Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^{p}(\mathbb{R}^{d})\). J. Funct. Anal.  258, 2422–2452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Papoulis, Generalized sampling expansion, in  IEEE Transactions on Circuits and Systems, CAS-24 (1977), pp. 652–654

    Google Scholar 

  23. Q. Sun, Local reconstruction for sampling in shift-invariant spaces. Adv. Comput. Math.  32, 335–352 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. P.P. Vaidyanathan, V.C. Liu, Classical sampling theorems in the context of multirate and polyphase digital filter bank structures. IEEE Trans. Acoust. Speech Signal Process.  36, 1480–1495 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Wiener,  Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With Engineering Applications (The Technology Press of the Massachusetts Institute of Technology, Cambridge, 1949)

    Google Scholar 

  26. F. Xue, F. Luisier, T. Blu, Multi-Wiener SURE-LET deconvolution. IEEE Trans. Image Process.  22, 1954–1968 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research in this chapter is funded by the collaborative NSF ATD grant DMS-1322127 and DMS-1322099. The authors would like to thank the organizers of the FFT at the University of Maryland for the opportunity to present our research to a wide audience of mathematicians and engineers. We are also grateful to S. J. Rose for his continued involvement in our projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Aldroubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aldroubi, A., Krishtal, I., Weber, E. (2015). Finite Dimensional Dynamical Sampling: An Overview. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-20188-7_9

Download citation

Publish with us

Policies and ethics