Skip to main content

Signal Processing on Weighted Line Graphs

  • Chapter
Excursions in Harmonic Analysis, Volume 4

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1154 Accesses

Abstract

This chapter describes a signal processing framework for signals that are represented, or indexed, by weighted line graphs, which are a generalization of directed line graphs used for representation of time signals in classical signal processing theory. The presented framework is based on the theory of discrete signal processing on graphs and on algebraic signal processing theory. It defines fundamental signal processing concepts, such as signals and filters,  z-transform, frequency and spectrum, Fourier transform and others, in a principled way. The framework also illustrates a strong connection between signal processing on weighted line graphs and signal representation based on orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Filters are  linear if for a linear combination of inputs they produce the same linear combination of outputs. Filters are  shift-invariant if the result of consecutive processing of a signal by multiple graph filters does not depend on the order of processing; that is, shift-invariant filters commute with each other.

  2. 2.

    The minimal polynomial of  A is the unique monic polynomial of the smallest degree that annihilates  A, that is,  m  A A) = 0 [7].

  3. 3.

    The  characteristic polynomial of a matrix  A is defined as \(p_{\mathbf{A}}(x) =\det (x\mathbf{I} -\mathbf{A}) =\prod _{ n=0}^{N-1}\)x − λ  n ) [7].

References

  1. H.C. Andrews, Multidimensional rotations in feature selection. IEEE Trans. Comput.  20(9),1045–1051 (1971)

    Article  MATH  Google Scholar 

  2. A. Bovik,  Handbook of Image and Video Processing, 2nd edn. (Academic, Amsterdam, 2005)

    Google Scholar 

  3. D.E. Dudgeon, R.M. Mersereau, Multidimensional digital signal processing, in  Prentice-Hall Signal Processing Series (Englewood Cliffs, Prentice-Hall, 1984)

    Google Scholar 

  4. W. Gautschi,  Orthogonal Polynomials: Computation and Approximation (Oxford University Press, New York, 2004)

    Google Scholar 

  5. A. Jerri,  Integral and Discrete Transforms with Applications and Error Analysis (CRC Press, New York, NY 1992)

    MATH  Google Scholar 

  6. P. Laguna, R. Jané, S. Olmos, N.V. Thakor, H. Rix, P. Caminal, Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model. J. Med. Biol. Eng. Comput.  34(1), 58–68 (1996)

    Article  Google Scholar 

  7. P. Lancaster, M. Tismenetsky,  The Theory of Matrices, 2nd edn. (Academic, San Diego, 1985)

    MATH  Google Scholar 

  8. L.R. Lo Conte, R. Merletti, G.V. Sandri, Hermite expansion of compact support waveforms: applications to myoelectric signals. IEEE Trans. Biomed. Eng.  41(12), 1147–1159 (1994)

    Article  Google Scholar 

  9. S. Mallat,  A Wavelet Tour of Signal Processing, 3rd edn. (Academic, Burlington, 2008)

    Google Scholar 

  10. G. Mandyam, N. Ahmed, The discrete Laguerre transform: derivation and applications. IEEE Trans. Signal Process.  44(12), 2925–2931 (1996)

    Article  Google Scholar 

  11. G. Mandyam, N. Ahmed, N. Magotra, Application of the discrete Laguerre transform to speech coding, in  Proceedings of Asilomar Conference on Signals, Systems, Computers (1995), pp. 1225–1228

    Google Scholar 

  12. J.-B. Martens, The Hermite transform - theory. IEEE Trans. Acoust. Speech Signal Process.  38(9), 1595–1605 (1990)

    Article  MATH  Google Scholar 

  13. J.-B. Martens, The Hermite transform - applications. IEEE Trans. Acoust. Speech Signal Process.  38(9), 1607–1618 (1990)

    Article  Google Scholar 

  14. J.C. Mason, D.C. Handscomb,  Chebyshev Polynomials (Chapman and Hall/CRC, Boca Raton, 2002)

    Book  Google Scholar 

  15. J.M.F. Moura, N. Balram, Recursive structure of noncausal Gauss Markov random fields. IEEE Trans. Inf. Theory  38(2), 334–354 (1992)

    Article  MATH  Google Scholar 

  16. J.M.F. Moura, M.G.S. Bruno, DCT/DST and Gauss-Markov fields: conditions for equivalence. IEEE Trans. Signal Process.  46(9), 2571–2574 (1998)

    Article  Google Scholar 

  17. H.J. Nussbaumer,  Fast Fourier Transformation and Convolution Algorithms, 2nd edn. (Springer, Berlin, 1982)

    Book  Google Scholar 

  18. A.V. Oppenheim, R.W. Schafer, J.R. Buck,  Discrete-Time Signal Processing, 2nd edn. (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  19. M. Püschel, J.M.F. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput.  32(5), 1280–1316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Püschel, J.M.F. Moura, Algebraic signal processing theory (2005), http://arxiv.org/abs/cs.IT/0612077

  21. M. Püschel, J.M.F. Moura, Algebraic signal processing theory: foundation and 1-D time. IEEE Trans. Signal Process.  56(8), 3572–3585 (2008)

    Article  MathSciNet  Google Scholar 

  22. M. Püschel, J.M.F. Moura, Algebraic signal processing theory: 1-D space. IEEE Trans. Signal Process.  56(8), 3586–3599 (2008)

    Article  MathSciNet  Google Scholar 

  23. M. Püschel, J.M.F. Moura, Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs. IEEE Trans. Signal Process.  56(4), 1502–1521 (2008)

    Article  MathSciNet  Google Scholar 

  24. M. Püschel, M. Rötteler, Algebraic signal processing theory: 2-D hexagonal spatial lattice. IEEE Trans. Image Process.  16(6), 1506–1521 (2007)

    Article  MathSciNet  Google Scholar 

  25. A. Sandryhaila, Algebraic signal processing: modeling and subband analysis. Thesis, Carnegie Mellon University, Pittsburgh (2010)

    Google Scholar 

  26. A. Sandryhaila, J.M.F. Moura, Nearest-neighbor image model.  Proceedings of IEEE International Conference on Image Processing (2012), pp. 2521–2524

    Google Scholar 

  27. A. Sandryhaila, J.M.F. Moura, Discrete signal processing on graphs. IEEE Trans. Signal Process.  61(7), 1644–1656 (2013)

    Article  MathSciNet  Google Scholar 

  28. A. Sandryhaila, J.M.F. Moura. Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process  62(12), 3042–3054 (2014)

    Article  MathSciNet  Google Scholar 

  29. A. Sandryhaila, J. Kovačević, M. Püschel, Compression of QRS complexes using Hermite expansion.  Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (2011), pp. 581–584

    Google Scholar 

  30. A. Sandryhaila, J. Kovačević, M. Püschel, Algebraic signal processing theory: Cooley-Tukey type algorithms for polynomial transforms based on induction. SIAM J. Matrix Anal. Appl.  32(2), 364–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Sandryhaila, J. Kovačević, M. Püschel, Algebraic signal processing theory: 1-D nearest-neighbor models. IEEE Trans. Signal Process.  60(5), 2247–2259 (2012)

    Article  MathSciNet  Google Scholar 

  32. A. Sandryhaila, S. Saba, M. Püschel, J. Kovačević, Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Process.  60(2), 947–955 (2012)

    Article  MathSciNet  Google Scholar 

  33. D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs. IEEE Signal Process. Mag.  30(3), 83–98 (2013)

    Article  Google Scholar 

  34. L. Sörnmo, P.O. Börjesson, P. Nygards, O. Pahlm, A method for evaluation of QRS shape features using a mathematical model for the ECG. IEEE Trans. Biomed. Eng.  BME-28(10), 713–717 (1981)

    Article  Google Scholar 

  35. G. Szegö,  Orthogonal Polynomials, 3rd edition. American Mathematical Society Colloquium Publications, USA (1967)

    Google Scholar 

  36. M. Vetterli, J. Kovačević, V.K. Goyal,  Foundations of Signal Processing (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  37. Y. Voronenko, M. Püschel, Algebraic signal processing theory: Cooley-Tukey type algorithms for teal DFTs. IEEE Trans. Signal Process.  57(1), 205–222 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Kovačević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sandryhaila, A., Kovačević, J. (2015). Signal Processing on Weighted Line Graphs. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-20188-7_10

Download citation

Publish with us

Policies and ethics