Skip to main content

Removal of Pharmaceutical and Personal Care Products in Aquatic Plant-Based Systems

  • Chapter
Book cover Electrokinetics Across Disciplines and Continents

Abstract

The use of pharmaceuticals and personal care products (PPCPs) is growing as they are used not only for treatment but also for prevention of illnesses. In wastewater treatment plants (WWTPs) many PPCPs are not completely degraded/removed, which contributes for their frequent detection in, e.g. salt marsh areas. These areas may be considered a sink, source and cycling centre of contaminants on the receiving water body flow rate. In this chapter, a study about the potential of salt marsh plants Halimione portulacoides and/or Spartina maritima for the removal of three PPCPs, caffeine (CAFF), oxybenzone (HMB) and triclosan (TCS), is summarized. Experiments, at microcosms level, had two main aims: (1) the simulation of natural estuarine environment and study of dispersion mechanisms and “natural” remediation potential of target PPCPs and (2) the optimization of biological treatment technologies in WWTPs by simulating constructed wetland composed by plants and light expanded clay aggregates (LECA). Results indicate that either in estuaries or in WWTP the presence of a physical support can help to decrease contaminant levels mainly through sorption processes. The tested salt marsh species also showed potential to directly or indirectly promote the remediation of contaminants. In any case the remediation potential and dispersion mechanism are highly dependent from the characteristics of contaminants, like octanol–water partition coefficient (Log K ow) and solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  Google Scholar 

  • Aga A (2008) Fate of pharmaceuticals in the environment and in water treatment systems. CRC, Boca Raton

    Google Scholar 

  • Aufiero M, Butler C, Jaser J (2012) An analysis of methods for detecting triclosan and removal of triclosan from water using activated carbon and zeolites. Major Qualifying Project completed in partial fulfillment of the Bachelor of Science Degree at Worcester Polytechnic Institute, Worcester

    Google Scholar 

  • Barceló D, Petrovic M (2007) Pharmaceuticals and personal care products (PPCPs) in the environment. Anal Bioanal Chem 4:1141–1142

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Institut d’Estudis Catalans, Barcelona. Contrib Sci 2:333–344

    Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    Article  CAS  Google Scholar 

  • Boorman LA (1999) Salt marshes—present functioning and future change. Mangrove Salt Marshes 3:227–241

    Article  Google Scholar 

  • Brix H, Arias CA, Del Bubba M (2001) Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Sci Technol 44:47–54

    CAS  Google Scholar 

  • Buerge IJ, Poiger T, Müller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290

    Article  Google Scholar 

  • Cameselle C, Chirakkara K, Reddy K (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR (2012) Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour Technol 116:497–501

    Article  CAS  Google Scholar 

  • Couto N, Ferreira AR, Guedes P, Mateus E, Ribeiro AB (Submitted). Partition and remediation potential of caffeine, oxybenzone and triclosan in estuarine environment.

    Google Scholar 

  • Couto MNPFS, Basto MCP, Vasconcelos MTSD (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Tissue Culture Association. In Vitro Cell. Dev Biol 29:207–212

    Google Scholar 

  • Cunningham VL, Buzby M, Hutchinson T, Mastrocco F, Parke N, Roden N (2006) Effects of human pharmaceuticals on aquatic life: next steps. Environ Sci Technol 40:3456–3462

    Article  CAS  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  Google Scholar 

  • Dordio AV, Teimao J, Ramalho I, Palace Carvalho AJ, Estevao Candeias AJ (2007) Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems. Sci Total Environ 380:237–246

    Article  CAS  Google Scholar 

  • Dordio A, Pinto J, Dias CB, Pinto AP, Carvalho AJP, Teixeira DM (2009a) Atenolol removal in microcosm constructed wetlands. Int J Environ Anal Chem 89:835–848

    Article  CAS  Google Scholar 

  • Dordio AV, Estêvão Candeias AJ, Pinto AP, Teixeira da Costa C, Carvalho AJP (2009b) Preliminary media screening for application in the removal of clofibric acid, carbamazepine and ibuprofen by SSF-constructed wetlands. Ecol Eng 35:290–302

    Article  Google Scholar 

  • Dordio AV, Carvalho AJP, Teixeira D, Dias CB, Pinto AP (2010) Removal of pharmaceuticals in microcosm constructed wetlands sing Typha spp. and LECA. Bioresour Technol 101:886–892

    Article  CAS  Google Scholar 

  • Dordio AV, Gonçalves P, Texeira D, Candeias AJ, Castanheiro JE, Pinto AP, Carvalho AJP (2011) Pharmaceuticals sorption behaviour in granulated cork for the selection of a support matrix for a constructed wetlands system. Int J Environ Anal Chem 91:615–631

    Article  CAS  Google Scholar 

  • Douglas H, Rats A (2007) Fitorremediação: Considerações Gerais e Características de Utilização. Silva Lus 15:103–117 (in Portuguese)

    Google Scholar 

  • Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferreira AR, Couto N, Ribeiro A (Submitted) Removal of pharmaceuticals and personal care products in microcosm constructed wetland with Spartina maritima and LECA

    Google Scholar 

  • García J, Rousseau DPL, Morató J, Lesage E, Matamoros V, Bayona JM (2010) Contaminant removal processes in subsurface-flow constructed wetlands: a review. Crit Rev Environ Sci Technol 40:561–661

    Article  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Helt CD, Weber KP, Legge RL, Slawson RM (2012) Antibiotic resistance profiles of representative wetland bacteria and faecal indicators following ciprofloxacin exposure in lab-scale constructed mesocosms. Ecol Eng 39:113–122

    Article  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Martín-Villacorta J, Bécares E, Bayona JM (2010a) Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Res 44:1429–1439

    Article  CAS  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martín-Villacorta J, Bécares E, Bayona JM (2010b) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44:3669–3678

    Article  CAS  Google Scholar 

  • Kadlec R, Knight R, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control. IWA, London

    Google Scholar 

  • Klamerth N, Rizzo L, Malato S, Maldonado MI, Agüera A, Fernández-Alba AR (2010) Degradation of fifteen emerging contaminants at μg L−1 initial concentrations by mild solar photo-fenton in MWTP effluents. Water Res 44:545–554

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Korkusuz EA (2005) Manual of practice on constructed wetlands for wastewater treatment and reuse in Mediterranean countries. Report, MED-REUNET II Support Programme (EC Project No: INCO-CT-2003–502453), AGBAR FOUNDATION, Spain

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 603rd Meeting Held at the University of Liverpool, Liverpool, 11–13 April 1983

    Google Scholar 

  • Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    Article  Google Scholar 

  • Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40:687–695

    Article  CAS  Google Scholar 

  • Mackova M, Dowling D, Macek T (2006) Phytoremediation and rhizoremediation, vol 9, 1st edn. Springer, Dordrecht, pp 1–3

    Book  Google Scholar 

  • Magi E, Di Carro M, Scapolla C, Nguyen KTN (2012) Stir bar sorptive extraction and LC–MS/MS for trace analysis of UV filters in different water matrices. Chromatographia 75:973–982

    Article  CAS  Google Scholar 

  • Matamoros V, García J, Bayona JM (2005) Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. Environ Sci Technol 39:5449–5454

    Article  CAS  Google Scholar 

  • Matamoros V, Arias C, Brix H, Bayona JM (2007) Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter. Environ Sci Technol 41:8171–8177

    Article  CAS  Google Scholar 

  • Matamoros V, Caselles-Osorio A, Garcia J, Bayona JM (2008) Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci Total Environ 394:171–176

    Article  CAS  Google Scholar 

  • Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88:1257–1264

    Article  CAS  Google Scholar 

  • McCully M (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation—transformation and control of contaminants, vol 9. Wiley, Hoboken, pp 1–298

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466

    Article  CAS  Google Scholar 

  • Pereira P, Caçador I, Vale C, Caetano M, Costa AL (2007) Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal). Sci Total Environ 380:93–101

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pubchem (2014) Available in: http://pubchem.ncbi.nlm.nih.gov

  • Punshon T, Gaines KF, Bertsch PM, Burger J (2003) Bioavailability of uranium and nickel to vegetation in a contaminated riparian ecosystem. Environ Toxicol Chem 22:1146–1154

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I (2007a) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I (2007b) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154

    Article  CAS  Google Scholar 

  • Reinhold D, Vishwanathan S, Park JJ, Oh D, Michael Saunders F (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687–692

    Article  CAS  Google Scholar 

  • Ruiz-Rueda O, Hallin S, Bañeras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 68:49–643

    Google Scholar 

  • Sigma-Aldrich (2014) Available in: https://www.sigmaaldrich.com/

  • Stevens KJ, Kim SY, Adhikari S, Vadapalli V, Venables BJ (2009) Effects of triclosan on seed germination and seedling development of three wetland plants: Sesbania herbacea, Eclipta prostrata, and Bidens frondosa. Environ Toxicol Chem 28(12):2598–2609

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Ternes TA, Bonerz M, Schmidt T (2001) Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography electrospray tandem mass spectrometry. J Chromatogr 398:175–185

    Article  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-a review. Sci Total Environ 429:123–155

    Article  CAS  Google Scholar 

  • Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  • WFD-UKTAG—Water Framework Directive-United Kingdom Technical Advisory Group (2009) Proposed EQS for water framework directive annex VIII substances: triclosan (For consultation). Scotland

    Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205

    Article  CAS  Google Scholar 

  • Zarate FM Jr, Schulwitz SE, Stevens KJ, Venables BJ (2012) Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Chemosphere 88:323–329

    Article  CAS  Google Scholar 

  • Zhang D, Gersberg RM, Ng WJ, Tan SK (2013a) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 1–20

    Google Scholar 

  • Zhang DQ, Hua T, Gersberg RM, Zhu J, Ng WJ, Tan SK (2013b) Fate of caffeine in mesocosms wetland planted with Scirpus validus. Chemosphere 90:1568–1572

    Article  CAS  Google Scholar 

  • Zhang DQ, Gersberg RM, Hua T, Zhu JF, Goyal MK, Ng WJ, Tan SK (2013c) Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environ Pollut 181:98–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana R. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, A.R., Couto, N., Guedes, P.R., Mateus, E.P., Ribeiro, A.B. (2016). Removal of Pharmaceutical and Personal Care Products in Aquatic Plant-Based Systems. In: Ribeiro, A., Mateus, E., Couto, N. (eds) Electrokinetics Across Disciplines and Continents. Springer, Cham. https://doi.org/10.1007/978-3-319-20179-5_18

Download citation

Publish with us

Policies and ethics