Skip to main content

Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil

  • Chapter
Electrokinetics Across Disciplines and Continents

Abstract

Amongst environmental contamination problems, soil contamination with metals and metalloids may represent a big threat due to the high toxicity and widespread presence of mining activities. Electrokinetic (EK) process relies on the application of a low level direct current between electrodes in a partially saturated or even saturated soil and appears as a promising in situ strategy for fine-grained contaminated soils. Due to its mobilization potential, EK process can be considered as an integrated tool for contaminants removal, alone and coupled with phytoremediation. The coupling of EK process with phytoremediation (also known as EK-assisted phytoremediation) is an innovative technique that deserves a deeper knowledge to enlarge the scope of EK application. The EK-enhanced phytoremediation aims to use the presence of plants to counteract the effects of the electric current as it brings most of the benefits of a “regular” phytoremediation scheme (e.g., recovery of soil properties and improvement of its structure).

Arsenic (As) is ubiquitous in the environment and highly toxic to all life forms. One of the most important anthropogenic sources of As in the environment is the mining and special attention has been paid to the environmental management of As-bearing mining sites throughout the world.

This chapter aims to give an overview on the results achieved so far on EK remediation of soil contaminated with As. The results obtained by the group on EK remediation, phytoremediation, and EK-assisted phytoremediation of a mine soil, China, contaminated with arsenic will also be summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:926–933

    Article  CAS  Google Scholar 

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27:2638–2647

    Article  CAS  Google Scholar 

  • Acar YB, Alshawabkeh AN, Gale RJ (1993) Fundamentals of extracting species from soils by electrokinetics. Waste Manage 13:141–151

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2007) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service

    Google Scholar 

  • Ahn J, Park Y, Kim J-Y, Kim K-W (2005) Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea. Environ Geochem Health 27:147–157

    Article  CAS  Google Scholar 

  • Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol 184:97–149

    CAS  Google Scholar 

  • Alam MGM, Tokunaga S (2006) Chemical extraction of arsenic from contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:631–643

    Article  CAS  Google Scholar 

  • Alcántara MT, Gómez J, Pazos M, Sanromán MA (2010) Electrokinetic remediation of PAH mixtures from kaolin. J Hazard Mater 179:1156–1160

    Article  Google Scholar 

  • Ali HH, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Alshawabkeh A, Yeung A, Bricka M (1999) Practical aspects of in-situ electrokinetic extraction. J Environ Eng 125:27–35

    Article  CAS  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Santa Regina I (2008) Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere 70:1459–1467

    Article  CAS  Google Scholar 

  • Antoniadis V, Tsadilas C, Samaras V, Sgouras J (2006) Availability of heavy metals applied to soil through sewage sludge. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Florida

    Google Scholar 

  • Baek K, Kim D-H, Park S-W, Ryu B-G, Bajargal T, Yang J-S (2009) Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater 161:457–462

    Article  CAS  Google Scholar 

  • Bassi R, Prasher SO, Simpson BK (2000) Extraction of metals from a contaminated sandy soil using citric acid. Environ Prog 19:275–282

    Article  CAS  Google Scholar 

  • Bech J, Corrales I, Tume P, Barceló J, Duran P, Roca N, Poschenrieder C (2012) Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (eastern Pyrenees). J Geochem Explor 113:100–105

    Article  CAS  Google Scholar 

  • Bednar AJ, Garbarino JR, Ranville JF, Wildeman TR (2005) Effects of iron on arsenic speciation and redox chemistry in acid mine water. J Geochem Explor 85:55–62

    Article  CAS  Google Scholar 

  • Beeston MP, van Elteren JT, Šlejkovec Z, Glass HJ (2008) Migration of arsenic from old tailings ponds—a case study on the King Edward Mine, Cornwall, UK. Environ Res 108:28–34

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  CAS  Google Scholar 

  • Bradshaw AD (1993) Understanding the fundamentals of succession. In: Miles J, Walton DH (eds) Primary succession on land. Blackwell, Oxford

    Google Scholar 

  • Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo AR, Martín RA, Cortés J, Litter MI, Jean J-S (2011) Arsenic removal from groundwater of the Chaco-Pampean plain (Argentina) using natural geological materials as adsorbents. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1297–1310

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Article  CAS  Google Scholar 

  • Cang L, Wang QY, Zhou DM, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol 79:246–253

    Article  CAS  Google Scholar 

  • Cang L, Zhou DM, Wang QY, Fan GP (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48

    Article  CAS  Google Scholar 

  • Chaiyaraksa C, Sriwiriyanuphap N (2004) Batch washing of cadmium from soil and sludge by a mixture of Na2S2O5 and Na2EDTA. Chemosphere 56:1129–1135

    Article  CAS  Google Scholar 

  • National Research Council (2001) Arsenic in drinking water 2001 update. National Academy Press, Washington, DC

    Google Scholar 

  • Couto N, Guedes P, Zhou DM, Ribeiro A (2015) Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil—potential of enhanced phytotechnologies. Chem Eng J 262:563–570

    Article  CAS  Google Scholar 

  • Daus B, Weiß H, Wennrich R (1998) Arsenic speciation in iron hydroxide precipitates. Talanta 46:867–873

    Article  CAS  Google Scholar 

  • Farrell J, Wang J, O’Day P, Conklin M (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ Sci Technol 35:2026–2032

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Varun M, D’Souza R, Paul M (2014) Chapter 17: Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. In: Soriano, MCH (ed) Environmental Risk Assessment of Soil Contamination. In Tech

    Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    Article  CAS  Google Scholar 

  • Guedes P, Magro C, Couto N, Mosca A, Mateus EP, Ribeiro A (2015) Potential of the electrodialytic process for emerging organic contaminants remediation and phosphorus separation from sewage sludge. Electrochim Acta (in press). http://dx.doi.org/10.1016/j.electacta.2015.03.167

  • Isosaari P, Sillanpää M (2010) Electromigration of arsenic and co-existing metals in mine tailings. Chemosphere 81:1155–1158

    Article  CAS  Google Scholar 

  • Isosaari P, Sillanpää M (2012) Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings. Sep Purif Technol 86:26–34

    Article  CAS  Google Scholar 

  • Jackson BP, Miller WP (2000) Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Am J 64:1616–1622

    Article  CAS  Google Scholar 

  • Jana U, Chassany V, Bertrand G, Castrec-Rouelle M, Aubry E, Boudsocq S, Laffray D, Repellin A (2012) Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation. J Environ Manage 110:188–193

    Article  CAS  Google Scholar 

  • Jang M, Hwang JS, Choi SI (2007) Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere 66:8–17

    Article  CAS  Google Scholar 

  • Kim S-O, Kim W-S, Kim K-W (2005a) Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ Geochem Health 27:443–453

    Article  CAS  Google Scholar 

  • Kim W-S, Kim S-O, Kim K-W (2005b) Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. J Hazard Mater 118:93–102

    Article  CAS  Google Scholar 

  • Ko I, Chang Y-Y, Lee C-H, Kim K-W (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J Hazard Mater 127:1–13

    Article  CAS  Google Scholar 

  • Kwon JC, Lee J-S, Jung MC (2012) Arsenic contamination in agricultural soils surrounding mining sites in relation to geology and mineralization types. Appl Geochem 27:1020–1026

    Article  CAS  Google Scholar 

  • Lee M, Paik I, Do W, Kim I, Lee Y, Lee S (2007) Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea. Environ Geochem Health 29:319–329

    Article  CAS  Google Scholar 

  • Levresse G, Lopez G, Tritlla J, López EC, Chavez AC, Salvador EM, Soler A, Corbella M, Sandoval LGH, Corona-Esquivel R (2012) Phytoavailability of antimony and heavy metals in arid regions: the case of the Wadley Sb district (San Luis, Potosí, Mexico). Sci Total Environ 427–428:115–125

    Article  Google Scholar 

  • Lima AT, Ottosen LM, Pedersen AJ, Ribeiro AB (2008) Characterization of fly ash from bio and municipal waste. Biomass Bioenerg 32:277–282

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, López R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcóllar mine spill (SW Spain). Sci Total Environ 290:105–120

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  • Mateus E, Zrostlíková J, Gomes da Silva M, Ribeiro A, Marriott P (2010) Electrokinetic removal of creosote from treated timber waste: a comprehensive gas chromatographic view. J Appl Electrochem 40:1183–1193

    Article  CAS  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation—hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  CAS  Google Scholar 

  • Murciego AM, Sánchez AG, González MAR, Gil EP, Gordillo CT, Fernández JC, Triguero TB (2007) Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ Pollut 145:15–21

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • O’Connor CS, Lepp NW, Edwards R, Sunderland G (2003) The combined Use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study. Environ Monit Assess 84:141–158

    Article  Google Scholar 

  • Ottosen LM, Pedersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta 52:3420–3426

    Article  CAS  Google Scholar 

  • Pérez-Sirvent C, Martínez-Sánchez MJ, Martínez-López S, Bech J, Bolan N (2012) Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. J Geochem Explor 123:128–135

    Article  Google Scholar 

  • Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107

    Article  CAS  Google Scholar 

  • Putra RS, Ohkawa Y, Tanaka S (2013) Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Sep Purif Technol 102:34–42

    Article  CAS  Google Scholar 

  • Qi C, Wu F, Deng Q, Liu G, Mo C, Liu B, Zhu J (2011) Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China. Microchem J 97:44–51

    Article  CAS  Google Scholar 

  • Reddy K, Chinthamreddy S (2003a) Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J Geotech Geoenviron 129:263–277

    Article  CAS  Google Scholar 

  • Reddy KR, Chinthamreddy S (2003b) Effects of initial form of chromium on electrokinetic remediation in clays. Adv Environ Res 7:353–365

    Article  CAS  Google Scholar 

  • Reddy K, Danda S, Saichek R (2004) Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils. J Environ Eng 130:1357–1366

    Article  CAS  Google Scholar 

  • Ribeiro AB, Mateus EP, Ottosen LM, Bech-Nielsen G (2000) Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste. Environ Sci Technol 34:784–788

    Article  CAS  Google Scholar 

  • Ribeiro AB, Rodriguez-Maroto JM, Mateus EP, Gomes H (2005) Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine: experimental and modeling. Chemosphere 59:1229–1239

    Article  CAS  Google Scholar 

  • Ribeiro AB, Mateus EP, Rodríguez-Maroto J-M (2011) Removal of organic contaminants from soils by an electrokinetic process: the case of molinate and bentazone. Experimental and modeling. Sep Purif Technol 79:193–203

    Article  CAS  Google Scholar 

  • Ryu B-G, Park G-Y, Yang J-W, Baek K (2011) Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Sep Purif Technol 79:170–176

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2003) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51:273–287

    Article  CAS  Google Scholar 

  • Saifullah ME, Qadir M, de Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    Article  CAS  Google Scholar 

  • Sawada A, Tanaka S, Fukushima M, Tatsumi K (2003) Electrokinetic remediation of clayey soils containing copper(II)-oxinate using humic acid as a surfactant. J Hazard Mater 96:145–154

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotox Environ Safe 11:247–270

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2010) Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J Hazard Mater 175:896–914

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environ Sci Technol 35:4562–4568

    Article  CAS  Google Scholar 

  • Tao Y, Zhang S, Jian W, Yuan C, Shan X-Q (2006) Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere 65:1281–1287

    Article  CAS  Google Scholar 

  • Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46:31–38

    Article  CAS  Google Scholar 

  • U.S. Geological Survey (2012) Arsenic. In: Brooks WE (ed) Mineral commodity summaries 2012. U.S. Geological Survey, Reston, pp 20–21

    Google Scholar 

  • Vaculík M, Jurkovič Ľ, Matejkovič P, Molnárová M, Lux A (2013) Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water Air Soil Pollut 224:1–16

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  CAS  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manage 90:2367–2376

    Article  CAS  Google Scholar 

  • Wang J-Y, Huang X-J, Kao JCM, Stabnikova O (2007) Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J Hazard Mater 144:292–299

    Article  CAS  Google Scholar 

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Xiao XY, Chen TB, Liao XY, Wu B, Yan XL, Zhai LM, Xie H, Wang LX (2008) Regional distribution of arsenic contained minerals and arsenic pollution in China. Geograph Res 27:201–212

    Google Scholar 

  • Yang J-S, Lee JY, Baek K, Kwon T-S, Choi J (2009) Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. J Hazard Mater 171:443–451

    Article  CAS  Google Scholar 

  • Yeung AT (2006) Contaminant extractability by electrokinetics. Environ Eng Sci 23(1):202–224

    Article  CAS  Google Scholar 

  • Yeung A, Hsu C (2005) Electrokinetic remediation of cadmium-contaminated clay. J Environ Eng 131:298–304

    Article  CAS  Google Scholar 

  • Yuan C, Chiang T-S (2007) The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere 67:1533–1542

    Article  CAS  Google Scholar 

  • Yuan C, Chiang T-S (2008) Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. J Hazard Mater 152:309–315

    Article  CAS  Google Scholar 

  • Yuan C, Hung C-H, Chen K-C (2009) Electrokinetic remediation of arsenate spiked soil assisted by CNT-Co barrier—the effect of barrier position and processing fluid. J Hazard Mater 171:563–570

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Paling E, Delides S (2004) Arsenic removal from contaminated water by natural iron ores. Mineral Eng 17:517–524

    Article  CAS  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

  • Zhou DM, Deng CF, Cang L (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56:265–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by FP7-PEOPLE-2010-IRSES-269289-ELECTROACROSSElectrokinetics across disciplines and continents: an integrated approach to finding new strategies for sustainable development and PTDC/ECM/111860/2009—Electrokinetic treatment of sewage sludge and membrane concentrate: Phosphorus recovery and dewatering and National Natural Science Foundation of China (21177135). RIARTAS-Red Iberoamericana de Aprovechamiento de Residuos Industriales para el Tratamiento de Suelos y Aguas Contaminadas, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (Cyted). N. Couto acknowledges Fundação para a Ciência e a Tecnologia for her Post-Doc fellowship (SFRH/BPD/81122/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula R. Guedes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guedes, P.R., Couto, N., Ribeiro, A.B., Zhou, DM. (2016). Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil. In: Ribeiro, A., Mateus, E., Couto, N. (eds) Electrokinetics Across Disciplines and Continents. Springer, Cham. https://doi.org/10.1007/978-3-319-20179-5_16

Download citation

Publish with us

Policies and ethics