Skip to main content

Abstract

Electrokinetic remediation is a widespread soil treatment technique especially suited for fine porous matrices. The principle of electrokinetic remediation is based on the application of a low-intensity direct current through the soil between electrodes–cathodes and anodes. This mobilizes charged species, causing ions and water to move towards the electrodes. Metal and positively charged organic compounds move towards the cathode. Anions such as chloride, nitrate, and negatively charged organic compounds move towards the anode. During around 25 years, this principle has been used successfully for the treatment of heavy metal polluted soil. This chapter gives a short overview of the process as an introduction for people not that familiar with the process, and list some tendencies and future directions in the development of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar YB, Alshawabkeh A (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Article  CAS  Google Scholar 

  • Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44:2171–2187

    Article  CAS  Google Scholar 

  • Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52(1):1–61

    Article  CAS  Google Scholar 

  • Boccaccini AR, Zhitomirsky I (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid St M 6(3):251–260

    Article  CAS  Google Scholar 

  • Cang L, Fan G-P, Zhou D-M, Wang Q-Y (2013) Enhanced-electro kinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control. Chemosphere 90(8):2326–2331

    Article  CAS  Google Scholar 

  • Casagrande L (1948) Electro-osmosis in soil. Geotechnique 1:1959

    Google Scholar 

  • Couto N, Guedes P, Mateus EP, Santos C, Ribau Teixeira M, Nunes LM, Hansen HK, Gutierrez C, Ottosen LM, Ribeiro AB (2013) Phosphorus recovery from a water reservoir—potential of nanofiltration coupled to electrodialytic process. Waste Biomass Valoriz 4(3):675–681. doi:10.1007/s12649-012-9194-7

    Article  CAS  Google Scholar 

  • Couto N, Guedes P, Zhou D-M, Ribeiro AB (2015) Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil—potential of enhanced phytotechnologies. Chem Eng J 262: 563–570. http://dx.doi.org/10.1016/j.cej.2014.09.021

    Google Scholar 

  • Dolnik V (2008) Capillary electrophoresis of proteins 2005–2007. Electrophoresis 29:143–156

    Article  CAS  Google Scholar 

  • ELECTROACROSS—Electrokinetics across disciplines and continents: an integrated approach to finding new strategies for sustainable development (European Union financed project— FP7-PEOPLE-2010-IRSES-269289). http://sites.fct.unl.pt/electroacross/

  • Ferreira C, Jensen P, Ottosen L, Ribeiro A (2005) Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Eng Geol 77(3–4):339–347

    Article  Google Scholar 

  • García-Cañas V, Cifuentes A (2008) Recent advances in the application of capillary electromigration methods for food analysis. Electrophoresis 29:294–309

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090

    Article  CAS  Google Scholar 

  • Gomes HICR (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. PhD thesis, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Portugal

    Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014) Electrodialytic remediation of PCB contaminated soil with iron nanoparticles and two different surfactants. J Coll Interf Sci 433: 189–195. http://dx.doi.org/10.1016/j.jcis.2014.07.022

  • Guedes P, Mateus EP, Couto N, Rodríguez Y, Ribeiro AB (2014) Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere 117: 124–131. http://dx.doi.org/10.1016/j.chemosphere.2014.06.017

    Google Scholar 

  • Hansen HK, Ottosen LM, Hansen L, Kliem BK, Villumsen A, Bech-Nielsen G (1999) Electrodialytic remediation of soil polluted with heavy metals: Key parameters for optimization of the process. Chem Eng Res Des 77(3):218–222

    Article  CAS  Google Scholar 

  • Hansen HK, Rojo A, Ottosen LM (2005) Electrodialytic remediation of copper mine tailings. J Hazard Mater 117(2–3):179–183

    Article  CAS  Google Scholar 

  • Hansen HK, Rojo A (2007) Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim Acta 52(10):3399–3405

    Article  CAS  Google Scholar 

  • Ho Lee H-H, Yang J-W (2000) A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater 77(1–3):227–240

    Article  Google Scholar 

  • Iskanda IK (ed) (2000) Environmental restoration of metals—contaminated soil. CRC, London

    Google Scholar 

  • Jakobsen MR, Fritt-Rasmussen J, Nielsen S, Ottosen LM (2004) Electrodialytic removal of cadmium from wastewater sludge. J Hazard Mater 106(2–3):127–132

    Article  CAS  Google Scholar 

  • Kim K-J, Kim D-H, Yoo J-C, Baek K (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79(2):164–169

    Article  CAS  Google Scholar 

  • Kim WS, Park GY, Kim DH, Jung HB, Ko SH, Baek K (2012) In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: influence of electrode configuration. Electrochim Acta 86:89–95

    Article  CAS  Google Scholar 

  • Kirkelund GM, Damoe AJ, Ottosen LM (2013) Electrodialytic removal of Cd from biomass combustion fly ash suspensions. J Hazard Mater 250–251:212–219

    Article  Google Scholar 

  • Lageman R, Pool W (1993) Electro reclamation: applications in the Netherlands. Environ Sci Technol 27:2648–2650

    Article  CAS  Google Scholar 

  • Lageman R, Clarke RL, Pool W (2005) Electro-reclamation, a versatile soil remediation solution. Eng Geol 77:191–201

    Article  Google Scholar 

  • Marry V, Dufreche JF, Jardat M, Meriguet G, Turq P, Grun F (2003) Dynamics and transport in charged porous media. Coll Surface A 222:147–153

    Article  CAS  Google Scholar 

  • Nystroem GM, Pedersen AJ, Ottosen LM, Villumsen A (2006) The use of desorbing agents in electrodialytic remediation of harbor sediment. Sci Total Environ 357:25–37

    Article  CAS  Google Scholar 

  • Ottosen LM, Pedersen AJ, Ribeiro AB, Hansen HK (2005) Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Eng Geol 77:317–329

    Article  Google Scholar 

  • Ottosen LM, Christensen IV, Rorig-Dalgård I, Jensen PE, Hansen HK (2008) Utilization of electromigration in civil and environmental engineering—processes, transport rates and matrix changes. J Environ Sci Health A 43:795–809

    Article  CAS  Google Scholar 

  • Page MM, Page CL (2002) Electro remediation of contaminated soils. J Environ Eng 128:208–219

    Article  CAS  Google Scholar 

  • Pazos M, Kirkelund GM, Ottosen LM (2010) Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. J Hazard Mater 176:1073–1078

    Article  CAS  Google Scholar 

  • Pengra DB, Wong PZ (1996) Electrokinetic phenomena in porous media. Mat Res Soc Symp Proc 407:3–14

    Article  CAS  Google Scholar 

  • Pedersen KB (2014) Applying multivariate analysis to developing electrodialytic remediation of harbour sediments from arctic locations. PhD dissertation, Faculty of Sciences and Technology, The Arctic University of Norway, Norway, 293p

    Google Scholar 

  • Prasad MNV, Sajwan KS, Naidu R (eds) (2006) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. CRC, Boca Raton

    Google Scholar 

  • Probstein RF, Hicks RE (1993) Removal of contaminants from soils by electric fields. Science 260:498–503

    Article  CAS  Google Scholar 

  • Reddy KR, Cameselle C (eds) (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken

    Google Scholar 

  • Reuss FF (1809) Sur un nouve leffet de l’électricité galvanique. Mem Soc Imp Naturalists Moscow 2:327–336

    Google Scholar 

  • Ribeiro AB, Mateus EP, Ottosen LM, Bech-Nielsen G (2000) Electrodialytic removal of Cu, Cr and As from chromated copper arsenate-treated timber waste. Environ Sci Technol 34(5):784–788. doi:10.1021/es990442e

    Article  CAS  Google Scholar 

  • Rojo A, Hansen HK, Cubillos M (2012) Electrokinetic remediation using pulsed sinusoidal electric field. Electrochim Acta 86:124–129

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2003) Effects of system variables on surfactant enhanced electrokinetic removal of polycyclic aromatic hydrocarbons from clayey soils. Environ Technol 24:503–515

    Article  CAS  Google Scholar 

  • Sharma HD, Reddy KR (eds) (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Symes C (2012) A little nail treatment. Ground Engineering, Feb. 2012: 18–20

    Google Scholar 

  • Thomson Reuters Web of Science, http://thomsonreuters.com/thomson-reuters-web-of-science/. Accessed 24 Sept 2014

  • Thomson Reuters Essential Science Indicators database, http://thomsonreuters.com/thomson-reuters-web-of-science/. Accessed 24 Sept 2014

  • US Environmental Protection Agency (1997) Report EPA 402-R-97-006: resource guide for electrokinetics laboratory and field processes applicable to radioactive and hazardous mixed wastes in soil and groundwater from 1992 to 1997.

    Google Scholar 

  • United States Patent and Trademark Office (USPTO). http://www.uspto.gov/. Accessed 24 Sept 2014

  • Velizarova E, Ribeiro AB, Mateus EP, Ottosen LO (2004) Effect of different extracting solutions оn electrodialytic remediation of CCA-trеаtеd wood waste. Part 1. Behaviour of Cu аnd Сr. J Hazard Mater 107(3):103–113

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Scottmeister U (eds) (2000) Remediation engineering of contaminated soils. Marcel Dekker, New York

    Google Scholar 

  • Yeung AT (2011) Milestone developments, myths, and future directions of electrokinetic remediation. Sep Purif Technol 79:124–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik K. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansen, H.K., Ottosen, L.M., Ribeiro, A.B. (2016). Electrokinetic Soil Remediation: An Overview. In: Ribeiro, A., Mateus, E., Couto, N. (eds) Electrokinetics Across Disciplines and Continents. Springer, Cham. https://doi.org/10.1007/978-3-319-20179-5_1

Download citation

Publish with us

Policies and ethics