Skip to main content

Photoionization Time Delays

  • Chapter
  • First Online:
Ultrafast Dynamics Driven by Intense Light Pulses

Abstract

The material presented in this chapter is based on important advances realized in “attophysics” which make feasible to follow the motion of electrons in atoms and molecules with attosecond-level time resolution. In this context, time-delays have been recently determined in the process of photoionization by extreme-ultra-violet (XUV) pulses and the question of the significance of these measured delays arises. As we shall outline here, numerical experiments show that they are intimately related to the structure of the ionized species’ continuous spectrum. Another point addressed here is that, in experiments, the measurements have the common characteristic to be performed in the presence of an auxiliary infra-red (IR) field, used to “clock” the timing of the process. This implies to adapt the theory treatment to handle such “two-color” photoionization processes. We review a systematic analysis of these features that are characteristic of this class of electronic transitions, when viewed in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other formal definitions can be invoked, see [22] for a comprehensive review.

  2. 2.

    The stationary-phase approximation is discussed in e.g. [23].

  3. 3.

    See e.g. [30] for a comprehensive derivation and exploitation of transitions delays in the particular context of resonant X-ray Raman scattering.

  4. 4.

    Note that the two reinterpretations of RABBIT in terms of transition or scattering delays are not contradictory, but rather complementary.

  5. 5.

    The equations are displayed in atomic units: \(\hbar =m=e=1/(4\pi \epsilon _0)=1\).

  6. 6.

    It has been shown theoretically that the delay of the photoelectron spectrogram in an attosecond streak-camera experiment, as compared to the time variation of the IR vector potential, is equal to the shift of the corresponding RABITT sidebands, c.f. [14, 36, 38].

  7. 7.

    For details about the RPAE theory see [28].

  8. 8.

    Surprisingly, the inclusion of correlation with the L-shell (\(*\)) brings the calculation further away from the experimental measurements.

References

  1. P. Agostini, L.F. DiMauro, Rep. Progr. Phys. 67(6), 813 (2004)

    Article  ADS  Google Scholar 

  2. P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007)

    Article  Google Scholar 

  3. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81(1), 163 (2009)

    Article  ADS  Google Scholar 

  4. F. Lepine, M.Y. Ivanov, M.J.J. Vrakking, Nat. Phot. 8(3), 195 (2014)

    Article  Google Scholar 

  5. S.R. Leone, C.W. McCurdy, J. Burgdorfer, L.S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C.H. Greene, M. Ivanov, R. Kienberger, U. Keller, M.F. Kling, Z. Loh, T. Pfeifer, A.N. Pfeiffer, R. Santra, A. Schafer, K. Stolow, U. Thumm, M.J.J. Vrakking, Nat. Phot. 8(3), 162 (2014)

    Article  Google Scholar 

  6. A. Cavalieri, N. Müller, T. Uphues, V. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel et al., Nature 449(7165), 1029 (2007)

    Article  ADS  Google Scholar 

  7. S. Haessler, B. Fabre, J. Higuet, J. Caillat, T. Ruchon, P. Breger, B. Carré, E. Constant, A. Maquet, E. Mével et al., Phys. Rev. A 80(1), 011404 (2009)

    Article  ADS  Google Scholar 

  8. M. Swoboda, T. Fordell, K. Klünder, J. Dahlström, M. Miranda, C. Buth, K. Schafer, J. Mauritsson, A. L’Huillier, M. Gisselbrecht, Phys. Rev. Lett. 104(10), 103003 (2010)

    Article  ADS  Google Scholar 

  9. M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. Cavalieri, Y. Komninos, T. Mercouris et al., Science 328(5986), 1658 (2010)

    Article  ADS  Google Scholar 

  10. K. Klünder, J. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet et al., Phys. Rev. Lett. 106(14), 143002 (2011)

    Article  ADS  Google Scholar 

  11. S. Neppl, R. Ernstorfer, E.M. Bothschafter, A.L. Cavalieri, D. Menzel, J.V. Barth, F. Krausz, R. Kienberger, P. Feulner, Phys. Rev. Lett. 109, 087401 (2012)

    Article  ADS  Google Scholar 

  12. D. Guénot, K. Klünder, C. Arnold, D. Kroon, J. Dahlström, M. Miranda, T. Fordell, M. Gisselbrecht, P. Johnsson, J. Mauritsson et al., Phys. Rev. A 85(5), 053424 (2012)

    Article  ADS  Google Scholar 

  13. J. Dahlström, A. L’Huillier, A. Maquet, J. Phys. B 45(18), 183001 (2012)

    Article  Google Scholar 

  14. R. Pazourek, S. Nagele, J. Burgdörfer, Faraday Discuss. 163, 353 (2013)

    Article  ADS  Google Scholar 

  15. E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger et al., Science 320(5883), 1614 (2008)

    Article  ADS  Google Scholar 

  16. D.H. Ko, K.T. Kim, J. Park, J.H. Lee, C.H. Nam, New J. Phys. 12(6), 063008 (2010)

    Article  ADS  Google Scholar 

  17. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419(6909), 803 (2002)

    Article  ADS  Google Scholar 

  18. L. Argenti, C. Ott, T. Pfeifer, F. Martín, J. Phys.: Conference Series 488(3), 032030 (2014)

    Google Scholar 

  19. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Science 340(6133), 716 (2013)

    Article  ADS  Google Scholar 

  20. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. F.T. Smith, Phys. Rev. 118(1), 349 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. C.A. de Carvalho, H.M. Nussenzveig, Phys. Rep. 364(2), 83 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. D.J. Tannor, Introduction to Quantum Mechanics—A Time-Dependent Perspective (University Science Books, Sausalito CA, 2007)

    Google Scholar 

  24. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Science 292(5522), 1689 (2001)

    Google Scholar 

  25. Y. Mairesse, A. de Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovacev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Science 302(5650), 1540 (2003)

    Google Scholar 

  26. Y. Mairesse, F. Quéré, Phys. Rev. A 71(1), 011401 (2005)

    Article  ADS  Google Scholar 

  27. H. Park, R.N. Zare, J. Chem. Phys. 104, 4554 (1996)

    Article  ADS  Google Scholar 

  28. M. Amusia, Atomic Photoeffect (Plenum Press, New York, 1990)

    Book  Google Scholar 

  29. M. Vacher, A. Maquet, R. Taïeb, J. Caillat (in preparation)

    Google Scholar 

  30. F. Gel’mukhanov, H. Ågren, Phys. Rep. 312, 87–330 (1999)

    Google Scholar 

  31. H.G. Muller, Appl. Phys. B 74(1), s17 (2002)

    Article  ADS  Google Scholar 

  32. W. Boutu, S. Haessler, H. Merdji, P. Breger, G. Waters, M. Stankiewics, L.J. Frasinski, R. Taïeb, J. Caillat, A. Maquet, P. Monchicourt, B. Carré, P. Salières, Nat. Phys. 4, 545 (2008)

    Article  Google Scholar 

  33. S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré et al., Nat. Phys. 6(3), 200 (2010)

    Article  Google Scholar 

  34. J. Caillat, A. Maquet, S. Haessler, B. Fabre, T. Ruchon, P. Salières, Y. Mairesse, R. Taïeb, Phys. Rev. Lett. 106(9), 093002 (2011)

    Article  ADS  Google Scholar 

  35. J. Dahlström, A. L’Huillier, J. Mauritsson, J. Phys. B 44(9), 095602 (2011)

    Article  ADS  Google Scholar 

  36. J.M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson, A. L’Huillier, R. Taïeb, Chem. Phys. 414, 53 (2013)

    Google Scholar 

  37. J.M. Dahlström, T. Carette, E. Lindroth, Phys. Rev. A 86, 061402 (2012)

    Article  ADS  Google Scholar 

  38. C.H. Zhang, U. Thumm, Phys. Rev. A 82(4), 043405 (2010)

    Article  ADS  Google Scholar 

  39. R. Gaillac, M. Vacher, A. Maquet, R. Taïeb, J. Caillat, Attosecond photoemission dynamics encoded in real-valued continuum wave-functions, submitted (2015)

    Google Scholar 

  40. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  41. K.C. Kulander, K.J. Schafer, J.L. Krause, Atoms in Intense Laser Fields (Academic Press Inc, United States, 1992)

    Google Scholar 

  42. P. Kruit, F. Read, J. Phys. E: Sci. Instrum. 16(4), 313 (1983)

    Article  ADS  Google Scholar 

  43. A.T. Eppink, D.H. Parker, Rev. Sci. Instrum. 68(9), 3477 (1997)

    Article  ADS  Google Scholar 

  44. J. Itatani, F. Quéré, G.L. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88(17), 173903 (2002)

    Article  ADS  Google Scholar 

  45. F. Quéré, Y. Mairesse, J. Itatani, J. Mod. Opt. 52(2), 339 (2005)

    Article  ADS  Google Scholar 

  46. R. Pazourek, J. Feist, S. Nagele, J. Burgdörfer, Phys. Rev. Lett. 108, 163001 (2012)

    Article  ADS  Google Scholar 

  47. M. Chini, S. Gilbertson, S.D. Khan, Z. Chang, Opt. Expr. 18(12), 13006 (2010)

    Article  ADS  Google Scholar 

  48. V. Véniard, R. Taïeb, A. Maquet, Phys. Rev. A 54(1), 721 (1996)

    Article  ADS  Google Scholar 

  49. S. Nagele, R. Pazourek, J. Feist, K. Doblhoff-Dier, C. Lemell, K. Tőkési, J. Burgdörfer, J. Phys. B 44(8), 081001 (2011)

    Google Scholar 

  50. S. Nagele, R. Pazourek, J. Feist, J. Burgdörfer, Phys. Rev. A 85(3), 033401 (2012)

    Google Scholar 

  51. T. Carette, J.M. Dahlström, L. Argenti, E. Lindroth, Phys. Rev. A 87, 023420 (2013)

    Google Scholar 

  52. L.B. Madsen, Am. J. Phys. 73(1), 57 (2005)

    Article  ADS  Google Scholar 

  53. A. Maquet, R. Taïeb, J. Mod. Opt. 54(13–15), 1847 (2007)

    Google Scholar 

  54. A.J. Galn, L. Argenti, F. Martín, New J. Phys. 15(11), 113009 (2013)

    Google Scholar 

  55. V.S. Yakovlev, J. Gagnon, N. Karpowicz, F. Krausz, Phys. Rev. Lett. 105(7), 073001 (2010)

    Article  ADS  Google Scholar 

  56. C.H. Zhang, U. Thumm, Phys. Rev. A 84(3), 033401 (2011)

    Article  ADS  Google Scholar 

  57. O. Smirnova, M. Spanner, M.Y. Ivanov, J. Phys. B 39(13), S323 (2006)

    Article  ADS  Google Scholar 

  58. M. Ivanov, O. Smirnova, Phys. Rev. Lett. 107(21), 213605 (2011)

    Article  ADS  Google Scholar 

  59. Q.C. Ning, L.Y. Peng, S.N. Song, W.C. Jiang, S. Nagele, R. Pazourek, J. Burgdörfer, Q. Gong, Phys. Rev. A 90, 013423 (2014)

    Google Scholar 

  60. J. Samson, W. Stolte, J. Electron. Spectrosc. Relat. Phenom. 123(23), 265 (2002)

    Article  Google Scholar 

  61. B. Möbus, B. Magel, K.H. Schartner, B. Langer, U. Becker, M. Wildberger, H. Schmoranzer, Phys. Rev. A 47, 3888 (1993)

    Google Scholar 

  62. H.G. Muller, Phys. Rev. A 60, 1341 (1999)

    Article  ADS  Google Scholar 

  63. J.M. Dahlström, E. Lindroth, J. Phys. B 47(12), 124012 (2014)

    Article  ADS  Google Scholar 

  64. J.W. Cooper, Phys. Rev. 128(2), 681 (1962)

    Article  ADS  Google Scholar 

  65. M. Amusia, V. Ivanov, N. Cherepkov, L. Chernysheva, Phys. Lett. A 40(5), 361 (1972)

    Article  ADS  Google Scholar 

  66. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  67. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  68. A. Kheifets, I. Ivanov, Phys. Rev. Lett. 105(23), 233002 (2010)

    Google Scholar 

  69. A.S. Kheifets, Phys. Rev. A 87, 063404 (2013)

    Google Scholar 

  70. G. Dixit, H.S. Chakraborty, M.E.A. Madjet, Phys. Rev. Lett. 111, 203003 (2013)

    Article  ADS  Google Scholar 

  71. L. Moore, M. Lysaght, J. Parker, H. van der Hart, K. Taylor, Phys. Rev. A 84(6), 061404 (2011)

    Article  ADS  Google Scholar 

  72. S. Nagele, R. Pazourek, J. Feist, J. Burgdörfer, Phys. Rev. A 85, 033401 (2012)

    Article  ADS  Google Scholar 

  73. J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. Burgdörfer, X. Guan, K. Bartschat, B.I. Schneider, Phys. Rev. A 89, 033417 (2014)

    Article  ADS  Google Scholar 

  74. E.P. Mansson, D. Guenot, C.L. Arnold, D. Kroon, S. Kasper, J.M. Dahlstrom, E. Lindroth, A.S. Kheifets, A. L’Huillier, S.L. Sorensen, M. Gisselbrecht, Nature Phys. 10(3), 207 (2014)

    Google Scholar 

  75. D.J. Kennedy, S.T. Manson, Phys. Rev. A 5(1), 227 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge that elements of this chapter are reproduced from [13, 63].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Haessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dahlström, J.M., Vacher, M., Maquet, A., Caillat, J., Haessler, S. (2016). Photoionization Time Delays. In: Kitzler, M., Gräfe, S. (eds) Ultrafast Dynamics Driven by Intense Light Pulses. Springer Series on Atomic, Optical, and Plasma Physics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-20173-3_8

Download citation

Publish with us

Policies and ethics