Skip to main content

Angular Streaking for Strong Field Ionization of Molecules—Attosecond Physics Without Attosecond Pulses

  • Chapter
  • First Online:
Ultrafast Dynamics Driven by Intense Light Pulses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 86))

Abstract

The angular streaking of a close-to-circular polarized ultrahsort laser pulse provides a powerful tool and opens new possibilities for attosecond physics without the using of attosecond pulses. For strong field ionization of molecules we discuss in this review how this technique allows to uncover the intrinsic phase-dependent directional molecular bond breaking in a symmetric multicycle laser pulse (Sect. 3.2), how it allows probing the tunnelling site of the freed electron in the electron localization-assisted enhanced ionization of molecules near the critical internuclear distance (Sect. 3.3), how it reveals the orientation-dependent tunnelling ionization rate of polar molecules without pre-alignment of the molecules (Sect. 3.4), and how to use it to sequence the release order of the freed electrons in multielectron ionization of a multicenter molecular dimer (Sect. 3.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hentschel et al., Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  2. G. Sansone et al., Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  3. E. Goulielmakis et al., Science 305, 1267 (2004)

    Article  ADS  Google Scholar 

  4. M. Drescher et al., Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  5. A.L. Cavalieri et al., Nature 449, 1029 (2007)

    Article  ADS  Google Scholar 

  6. S. Gräfe, V. Engel, MYu. Ivanov, Phys. Rev. Lett. 101, 103001 (2008)

    Article  ADS  Google Scholar 

  7. P. Eckle et al., Nat. Phys. 4, 565 (2008)

    Article  Google Scholar 

  8. P. Eckle et al., Science 322, 1525 (2008)

    Article  ADS  Google Scholar 

  9. A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dörner, U. Keller, Nat. Phys. 7, 418 (2011)

    Article  Google Scholar 

  10. J. Wu et al., Nat. Commun. 4, 2177 (2013)

    ADS  Google Scholar 

  11. R. Dörner et al., Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

  12. J. Ulrich et al., Rep. Rrog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  13. O. Jagutzki et al., Nucl. Instr. Meth. Phys. Res. A 477, 244 (2002)

    Article  ADS  Google Scholar 

  14. M.F. Kling et al., Science 312, 246 (2006)

    Article  ADS  Google Scholar 

  15. M. Kremer et al., Phys. Rev. Lett. 103, 213003 (2009)

    Article  ADS  Google Scholar 

  16. I. Znakovskaya et al., Phys. Rev. Lett. 108, 063002 (2012)

    Article  ADS  Google Scholar 

  17. D. Ray et al., Phys. Rev. Lett. 103, 223201 (2009)

    Article  ADS  Google Scholar 

  18. J. Wu et al., Phys. Rev. A 87, 023406 (2013)

    Article  ADS  Google Scholar 

  19. F. He, A. Becker, U. Thumm, Phys. Rev. Lett. 101, 213002 (2008)

    Article  ADS  Google Scholar 

  20. F. He, C. Ruiz, A. Becker, J. Phys. B 41, 081003 (2008)

    Article  ADS  Google Scholar 

  21. G. Sansone et al., Nature 465, 763 (2010)

    Article  ADS  Google Scholar 

  22. K.P. Singh et al., Phys. Rev. Lett. 104, 023001 (2010)

    Article  ADS  Google Scholar 

  23. K. Codling, L.J. Frasinski, P.A. Hatherly, J. Phys. B 22, L321 (1989)

    Article  ADS  Google Scholar 

  24. T. Seideman, MYu. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)

    Article  ADS  Google Scholar 

  25. T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, R2511 (1995)

    Article  ADS  Google Scholar 

  26. S. Chelkowski, A.D. Bandrauk, J. Phys. B 28, L723 (1995)

    Article  ADS  Google Scholar 

  27. L.J. Frasinski et al., Phys. Rev. Lett. 58, 2424 (1987)

    Article  ADS  Google Scholar 

  28. W. Hill et al., Phys. Rev. Lett. 69, 2646 (1992)

    Article  ADS  Google Scholar 

  29. M. Schmidt, D. Normand, C. Cornaggia, Phys. Rev. A 50, 5037 (1994)

    Article  ADS  Google Scholar 

  30. E. Constant, H. Stapelfeldt, P.B. Corkum, Phys. Rev. Lett. 76, 4140 (1996)

    Article  ADS  Google Scholar 

  31. M.J. DeWitt, R.J. Levis, J. Chem. Phys. 108, 7045 (1998)

    Article  ADS  Google Scholar 

  32. A.N. Markevitch, D.A. Romanov, S.M. Smith, R.J. Levis, Phys. Rev. Lett. 92, 063001 (2004)

    Article  ADS  Google Scholar 

  33. J. Wu et al., Nat. Commun. 3, 1113 (2012)

    Article  ADS  Google Scholar 

  34. Z. Vager, R. Naaman, E.P. Kanter, Science 244, 426 (1989)

    Article  ADS  Google Scholar 

  35. J. Wu et al., Phys. Rev. Lett. 108, 043002 (2012)

    Article  ADS  Google Scholar 

  36. X.M. Tong, Z.X. Zhao, C.D. Lin, Phys. Rev. A 66, 033402 (2002)

    Article  ADS  Google Scholar 

  37. O.I. Tolstikhin, T. Morishita, L.B. Madsen, Phys. Rev. A 84, 053423 (2011)

    Article  ADS  Google Scholar 

  38. J. Muth-Böhm, A. Becker, F.H.M. Faisal, Phys. Rev. Lett. 85, 2280 (2000)

    Article  ADS  Google Scholar 

  39. L. Holmegaard et al., Nat. Phys. 6, 428 (2010)

    Article  Google Scholar 

  40. D. Dimitrovski et al., Phys. Rev. A 83, 023405 (2011)

    Article  ADS  Google Scholar 

  41. S. De et al., Phys. Rev. Lett. 103, 153002 (2009)

    Article  ADS  Google Scholar 

  42. M. Abu-samha, L.B. Madsen, Phys. Rev. A 82, 043413 (2010)

    Article  ADS  Google Scholar 

  43. K.J. Betsch, D.W. Pinkham, R.R. Jones, Phys. Rev. Lett. 105, 223002 (2010)

    Article  ADS  Google Scholar 

  44. H. Ohmura, N. Saito, T. Morishita, Phys. Rev. A 83, 063407 (2011)

    Article  ADS  Google Scholar 

  45. H. Li et al., Phys. Rev. A 84, 043429 (2011)

    Article  ADS  Google Scholar 

  46. X. Zhu, Q. Zhang, W. Hong, P. Lu, Z. Xu, Opt. Express 19, 24 198 (2011)

    Google Scholar 

  47. J. Wu et al., Phys. Rev. Lett. 108, 183001 (2012)

    Article  ADS  Google Scholar 

  48. A. Staudte et al., Phys. Rev. Lett. 102, 033004 (2009)

    Article  ADS  Google Scholar 

  49. X. Gong et al., Phys. Rev. A 88, 013422 (2013)

    Article  ADS  Google Scholar 

  50. I. Znakovskaya et al., Phys. Rev. Lett. 103, 103002 (2009)

    Article  ADS  Google Scholar 

  51. S. De et al., Phys. Rev. A 84, 043410 (2011)

    Article  ADS  Google Scholar 

  52. O. Smirnova et al., Nature 460, 972 (2009)

    Article  ADS  Google Scholar 

  53. B.K. McFarland, J.P. Farrell, P.H. Bucksbaum, M. Gühr, Science 322, 1232 (2008)

    Article  ADS  Google Scholar 

  54. H. Akagi et al., Science 325, 1364 (2009)

    Article  ADS  Google Scholar 

  55. J. Wu et al., Phys. Rev. Lett. 111, 083003 (2013)

    Article  ADS  Google Scholar 

  56. C.R. Munteanu, J.L. Cacheiro, B. Fernández, J. Chem. Phys. 121, 10419 (2004)

    Article  ADS  Google Scholar 

  57. J. Wu et al., J. Chem. Phys. 137, 104308 (2012)

    Article  ADS  Google Scholar 

  58. C. Guo, M. Li, J.P. Nibarger, G.N. Gibson, Phys. Rev. A 58, R4271 (1998)

    Article  ADS  Google Scholar 

  59. D. Pavičić et al., Phys. Rev. Lett. 98, 243001 (2007)

    Article  ADS  Google Scholar 

  60. V. Tagliamonti, H. Chen, G.N. Gibson, Phys. Rev. Lett. 110, 073002 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the many coworkers and colleagues who helped in the present work. We would like to mention M. Kunitski, A. Vredenborg, M. Meckel, M. Magrakvelidze, B. Ulrich, M. Schöffler, M. Pitzer, M. Richter, S. Voss, H. Sann, H. Kim, F. K. Amankona-Diawuo J. Lower, T. Jahnke, L.P.H. Schmidt, A. Czasch, U. Thumm, T. Pfeifer, T. Seideman, and H. Schmidt-Böcking. This work was partially supported by the Deutsche Forschungsgemeinschaft. J.W. acknowledges support by the Alexander von Humboldt Foundation, the “Eastern Scholar” Program, the NCET in University (NCET-12–0177), the Project from SSTC (13QH1401400), the “Shu Guang” project (12SG25), and the National Natural Science Fund (11425416 and 11374103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Dörner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, J., Dörner, R. (2016). Angular Streaking for Strong Field Ionization of Molecules—Attosecond Physics Without Attosecond Pulses. In: Kitzler, M., Gräfe, S. (eds) Ultrafast Dynamics Driven by Intense Light Pulses. Springer Series on Atomic, Optical, and Plasma Physics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-20173-3_3

Download citation

Publish with us

Policies and ethics