Skip to main content

Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation

  • Chapter
  • First Online:
Intrinsically Disordered Proteins Studied by NMR Spectroscopy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 870))

Abstract

Intrinsically disordered proteins (IDPs) and hybrid proteins possessing ordered domains and intrinsically disordered protein regions (IDPRs) are highly abundant in various proteomes. They are different from ordered proteins at many levels, and an unambiguous representation of an IDP structure is a difficult task. In fact, IDPs show an extremely wide diversity in their structural properties, being able to attain extended conformations (random coil-like) or to remain globally collapsed (molten globule-like). Disorder can differently affect different parts of a protein, with some regions being more ordered than others. IDPs and IDPRs exist as dynamic ensembles, resembling “protein-clouds”. IDP structures are best presented as conformational ensembles that contain highly dynamic structures interconverting on a number of timescales. The determination of a unique high-resolution structure is not possible for an isolated IDP, and a detailed structural and dynamic characterization of IDPs cannot typically be provided by a single tool. Therefore, accurate descriptions of IDPs/IDPRs rely on a multiparametric approach that includes a host of biophysical methods that can provide information on the overall compactness of IDPs and their conformational stability, shape, residual secondary structure, transient long-range contacts, regions of restricted or enhanced mobility, etc. The goal of this chapter is to provide a brief overview of some of the components of this multiparametric approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.rcsb.org.

  2. 2.

    http://mobidb.bio.unipd.it/.

References

  • Abzalimov RR, Frimpong AK, Kaltashov IA (2012) Detection and characterization of large-scale protein conformational transitions in solution using charge-state distribution analysis in ESI-MS. Methods Mol Biol 896:365–373

    CAS  PubMed  Google Scholar 

  • Adler AJ, Greenfield NJ, Fasman GD (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol 27:675–735

    Article  CAS  PubMed  Google Scholar 

  • Altenbach C, Flitsch SL, Khorana HG et al (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28(19):7806–7812

    Article  CAS  PubMed  Google Scholar 

  • Altenbach C, Marti T, Khorana HG et al (1990) Transmembrane protein-structure: spin labeling of bacteriorhodopsin mutants. Science 248(4959):1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Ami D, Natalello A, Zullini A et al (2004) Fourier transform infrared microspectroscopy as a new tool for nematode studies. FEBS lett 576(3):297–300

    Google Scholar 

  • Ami D, Neri T, Natalello A et al (2008) Embryonic stem cell differentiation studied by FT-IR spectroscopy. Biochim Biophys Acta 1783(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Ami D, Natalello A, Doglia SM (2012) Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol Biol 895:85–100

    Article  CAS  PubMed  Google Scholar 

  • Amit AG, Mariuzza RA, Phillips SE et al (1985) Three-dimensional structure of an antigen-antibody complex at 6 A resolution. Nature 313(5998):156–158

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Kodera N (2012) Visualization of mobility by atomic force microscopy. Methods Mol Biol 896:57–69

    CAS  PubMed  Google Scholar 

  • Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ando T, Kodera N, Naito Y et al (2003) A high-speed atomic force microscope for studying biological macromolecules in action. ChemPhysChem 4(11):1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Uchihashi T, Kodera N et al (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20(6):448–458

    Article  CAS  PubMed  Google Scholar 

  • Arnone A, Bier CJ, Cotton FA et al (1971) A high resolution structure of an inhibitor complex of the extracellular nuclease of staphylococcus aureus. I. Experimental procedures and chain tracing. J Biol Chem 246(7):2302–2316

    CAS  PubMed  Google Scholar 

  • Arrondo JL, Goni FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72(4):367–405

    Article  CAS  PubMed  Google Scholar 

  • Arrondo JL, Muga A, Castresana J et al (1993) Quantitative studies of the structure of proteins in solution by fourier-transform infrared spectroscopy. Prog Biophys Mol Biol 59(1):23–56

    Article  CAS  PubMed  Google Scholar 

  • Auclair JR, Green KM, Shandilya S et al (2007) Mass spectrometry analysis of HIV-1 Vif reveals an increase in ordered structure upon oligomerization in regions necessary for viral infectivity. Proteins 69(2):270–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auclair JR, Somasundaran M, Green KM et al (2012) Mass spectrometry tools for analysis of intermolecular interactions. Methods Mol Biol 896:387–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Back JW, de Jong L, Muijsers AO et al (2003) Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 331(2):303–313

    Article  CAS  PubMed  Google Scholar 

  • Bailey RW, Dunker AK, Brown CJ et al (2001) Clusterin, a binding protein with a molten globule-like region. BioChemistry 40(39):11828–11840

    Article  CAS  PubMed  Google Scholar 

  • Bandekar J (1992) Amide modes and protein conformation. Biochim Biophys Acta 1120(2):123–143

    Article  CAS  PubMed  Google Scholar 

  • Barron LD, Hecht L, Blanch EW et al (2000) Solution structure and dynamics of biomolecules from Rraman optical activity. Prog Biophys Mol Biol 73(1):1–49

    Article  CAS  PubMed  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101

    Article  CAS  PubMed  Google Scholar 

  • Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430

    Article  CAS  PubMed  Google Scholar 

  • Basak SK, Ladisch MR (1995) Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties. Anal Biochem 226(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Belle V, Rouger S, Costanzo S et al (2008) Mapping α-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy. Proteins 73(4):973–988

    Google Scholar 

  • Berjot M, Marx J, Alix AJP (1987) Determination of the secondary structure of proteins from the Raman amide-I band—the reference intensity profiles method. J Raman Spectrosc 18(4):289–300

    Article  CAS  Google Scholar 

  • Bernadό P, Blanchard L, Timmins P et al (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci U S A 102 (47):17002–17007

    Google Scholar 

  • Bernadό P, Mylonas E, Petoukhov MV et al (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129(17):5656–5664

    Article  CAS  PubMed  Google Scholar 

  • Binolfi A, Theillet FX, Selenko P (2012) Bacterial in-cell NMR of human αsynuclein: a disordered monomer by nature? Biochem Soc Trans 40(5):950–954

    Article  CAS  PubMed  Google Scholar 

  • Bischak CG, Longhi S, Snead DM et al (2010) Probing structural transitions in the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by vibrational spectroscopy of cyanylated cysteines. Biophys J 99:1676–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biswas R, Kuhne H, Brudvig GW et al (2001) Use of EPR spectroscopy to study macromolecular structure and function. Sci Prog 84(Pt 1):45–67

    Article  CAS  PubMed  Google Scholar 

  • Bloomer AC, Champness JN, Bricogne G et al (1978) Protein disk of tobacco mosaic virus at 2.8 A resolution showing the interactions within and between subunits. Nature 276(5686):362–368

    Article  CAS  PubMed  Google Scholar 

  • Bobst CE, Kaltashov IA (2012) Localizing flexible regions in proteins using hydrogen-deuterium exchange mass spectrometry. Methods Mol Biol 896:375–385

    CAS  PubMed  Google Scholar 

  • Bodart JF, Wieruszeski JM, Amniai L et al (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192(2):252–257

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Schwager P, Huber R (1978) The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. J Mol Biol 118(1):99–112

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau RW, Malito E, Chenal A et al (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284(21):14645–14656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewer SH, Song BB, Raleigh DP et al (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46(11):3279–3285

    Article  CAS  PubMed  Google Scholar 

  • Brucale M, Sandal M, Maio SD et al (2009) Pathogenic mutations shift the equilibria of αsynuclein single molecules towards structured conformers. Chembiochem 10(1):176–183

    Article  CAS  PubMed  Google Scholar 

  • Brucale M, Tessari I, Bubacco L et al (2012) Single-molecule force spectroscopy of chimeric polyprotein constructs containing intrinsically disordered domains. Methods Mol Biol 896:47–56

    CAS  PubMed  Google Scholar 

  • Buchner GS, Kubelka J (2012) Isotope-edited infrared spectroscopy. Methods Mol Biol 895:347–358

    Article  CAS  PubMed  Google Scholar 

  • Buyens K, Lucas B, Raemdonck K et al (2008) A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Control Release 126(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25(3):469–487

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Singh BR (1999) Identification of βturn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophys Chem 80(1):7–20

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Singh BR (2004) A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43(9):2541–2549

    Article  CAS  PubMed  Google Scholar 

  • Callender R, Dyer RB (2002) Probing protein dynamics using temperature jump relaxation spectroscopy. Curr Opin Struct Biol 12(5):628–633

    Article  CAS  PubMed  Google Scholar 

  • Callender RH, Dyer RB, Gilmanshin R et al (1998) Fast events in protein folding: the time evolution of primary processes. Annu Rev Phys Chem 49:173–202

    Article  CAS  PubMed  Google Scholar 

  • Calmettes P, Durand D, Desmadril M et al (1994) How random is a highly denatured protein? Biophys Chem 53(1–2):105–113

    Article  CAS  PubMed  Google Scholar 

  • Chemes LB, Alonso LG, Noval MG et al (2012) Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods Mol Biol 895:387–404

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Kliger DS (1996) Time-resolved near UV circular dichroism and absorption studies of carbonmonoxymyoglobin photolysis intermediates. Inorg Chim Acta 242(1–2):149–158

    Article  CAS  Google Scholar 

  • Chen E, Kliger DS (2012) Deconstructing time-resolved optical rotatory dispersion kinetic measurements of cytochrome c folding: from molten globule to the native state. Methods Mol Biol 895:405–419

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Rhoades E (2008) Fluorescence characterization of denatured proteins. Curr Opin Struct Biol 18(4):516–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YH, Yang JT, Martinez HM (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. BioChemistry 11(22):4120–4131

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Parker W, Lewis JW et al (1993) Time-resolved UV circular dichroism of phytochrome a: folding of the N-terminal region. J Am Chem Soc 115(21):9854–9855

    Article  CAS  Google Scholar 

  • Chen EF, Lapko VN, Song PS et al (1997) Dynamics of the N-terminal αhelix unfolding in the photoreversion reaction of phytochrome A. BioChemistry 36(16):4903–4908

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Wood MJ, Fink AL et al (1998) Time-resolved circular dichroism studies of protein folding intermediates of cytochrome c. BioChemistry 37(16):5589–5598

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Wittung-Stafshede P, Kliger DS (1999) Far-UV time-resolved circular dichroism detection of electron-transfer-triggered cytochrome c folding. J Am Chem Soc 121(16):3811–3817

    Article  CAS  Google Scholar 

  • Chen E, Kumita JR, Woolley GA et al (2003a) The kinetics of helix unfolding of an azobenzene cross-linked peptide probed by nanosecond time-resolved optical rotatory dispersion. J Am Chem Soc 125(41):12443–12449

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Gensch T, Gross AB et al (2003b) Dynamics of protein and chromophore structural changes in the photocycle of photoactive yellow protein monitored by time-resolved optical rotatory dispersion. BioChemistry 42(7):2062–2071

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Goldbeck RA, Kliger DS (2003c) Earliest events in protein folding: submicrosecond secondary structure formation in reduced cytochrome c. J Phys Chem A 107(40):8149–8155

    Article  CAS  Google Scholar 

  • Chen EF, Kumita JR, Woolley GA et al (2003d) The kinetics of helix unfolding of an azobenzene cross-linked peptide probed by nanosecond time-resolved optical rotatory dispersion. J Am Chem Soc 125(41):12443–12449

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Goldbeck RA, Kliger DS (2004) The earliest events in protein folding: a structural requirement for ultrafast folding in cytochrome c. J Am Chem Soc 126(36):11175–11181

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Abel CJ, Goldbeck RA et al (2007a) Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c. BioChemistry 46(43):12463–12472

    Article  CAS  PubMed  Google Scholar 

  • Chen EF, Swartz TE, Bogomolni RA et al (2007b) A LOV story: the signaling state of the Phot1 LOV2 photocycle involves chromophore-triggered protein structure relaxation, as probed by far-UV time-resolved optical rotatory dispersion spectroscopy. Biochemistry 46(15):4619–4624

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Van Vranken V, Kliger DS (2008) The folding kinetics of the SDS-induced molten globule form of reduced cytochrome c. BioChemistry 47(19):5450–5459

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Goldbeck RA, Kliger DS (2010) Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanisms. Methods 52(1):3–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chenal A, Guijarro JI, Raynal B et al (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284(3):1781–1789

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Oh KI, Cho MH (2008) Azido-derivatized compounds as IR probes of local electrostatic environment: theoretical studies. J Chem Phys 129(17):11

    Article  CAS  Google Scholar 

  • Choi UB, Weninger KR, Bowen ME (2012) Immobilization of proteins for single-molecule fluorescence resonance energy transfer measurements of conformation and dynamics. Methods Mol Biol 896:3–20

    CAS  PubMed  Google Scholar 

  • Choo LP, Wetzel DL, Halliday WC et al (1996) In situ characterization of βamyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71(4):1672–1679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol 308(5):1011–1032

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Hsiao BS (2001) Small-angle X-ray scattering of polymers. Chem Rev 101(6):1727–1761

    Article  CAS  PubMed  Google Scholar 

  • Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27(6):288–295

    Article  CAS  PubMed  Google Scholar 

  • Daughdrill GW, Pielak GJ, Uversky VN et al (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 271–353

    Google Scholar 

  • Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39(3):169–175

    Article  CAS  PubMed  Google Scholar 

  • Dedmon MM, Patel CN, Young GB et al (2002) FlgM gains structure in living cells. Proc Natl Acad Sci U S A 99(20):12681–12684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delmas PD, Stenner DD, Romberg RW et al (1984) Immunochemical studies of conformational alterations in bone γ-carboxyglutamic acid containing protein. BioChem 23(20):4720–4725

    Article  CAS  Google Scholar 

  • Dhar A, Gruebele M (2011) Fast relaxation Imaging in living cells. Curr Protoc Protein Sci (editorial board, john E Coligan et al.) Chap. 28:Unit 28 21

    Google Scholar 

  • Dhar A, Prigozhin M, Gelman H et al (2012) Studying IDP stability and dynamics by fast relaxation imaging in living cells. Methods Mol Biol 895:101–111

    Article  CAS  PubMed  Google Scholar 

  • Di Domenico T, Walsh I, Martin AJ et al (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28(15):2080–2081

    Article  PubMed  CAS  Google Scholar 

  • Diomede L, Cassata G, Fiordaliso F et al (2010) Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40(2):424–431

    Article  CAS  PubMed  Google Scholar 

  • Djerassi C (1960) Optical rotatory dispersion: applications to organic chemistry. McGraw-Hill, New York

    Google Scholar 

  • Doglia SM, Ami D, Natalello A et al (2008) Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol J 3(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Doniach S (2001) Changes in biomolecular conformation seen by small angle X-ray scattering. Chem Rev 101:1763–1778

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19(9):805–806

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Uversky VN (2010) Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 10(6):782–788

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Garner E, Guilliot S et al (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput:473–484

    Google Scholar 

  • Dunker AK, Obradovic Z, Romero P et al (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ et al (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD et al (2002) Intrinsic disorder and protein function. Bio Chem 41(21):6573–6582

    CAS  Google Scholar 

  • Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Dhar A, McDonald D et al (2010) Protein folding stability and dynamics imaged in a living cell. Nat Methods 7(4):319–323

    Article  CAS  PubMed  Google Scholar 

  • Ebel C (2004) Analytical ultracentrifugation for the study of biological macromolecules. Progr Colloid Polym Sci 127:73–82

    CAS  Google Scholar 

  • Ebel C (2007) Analytical ultracentrifugation. State of the art and perspectives. In: Uversky VN, Permyakov EA (eds) Protein structures: methods in protein structure and stability analysis, vol Chap. 2.2. vol methods in protein structure and stability analysis. Part C. Conformational stability, size, shape and surface of protein molecules. Nova Science Publishers, New York, pp 229–260

    Google Scholar 

  • Edelstein L, Stetz MA, McMahon HA et al (2010) The effects of Alpha-Helical structure and cyanylated cysteine on each other. J Phys Chem B 114(14):4931–4936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eliezer D (2007) Characterizing residual structure in disordered protein states using nuclear magnetic resonance. Methods Mol Biol 350:49–67

    CAS  PubMed  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19(1):23–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eyles SJ, Kaltashov IA (2004) Methods to study protein dynamics and folding by mass spectrometry. Methods 34(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Fafarman AT, Webb LJ, Chuang JI et al (2006) Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J Am Chem Soc 128(41):13356–13357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol 16(5):644–653

    Article  CAS  PubMed  Google Scholar 

  • Farmer TB, Caprioli RM (1998) Determination of protein-protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33(8):697–704

    Article  CAS  PubMed  Google Scholar 

  • Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenem Press, New York

    Book  Google Scholar 

  • Feix JB, Klug CS (1998) Site-directed spin-labeling of membrane proteins and peptide-membrane interactions. In: Berliner L (ed) Biological magnetic resonance, vol spin labeling: the next millenium. Plenum Press, New York, pp 251–281

    Google Scholar 

  • Ferreon AC, Gambin Y, Lemke EA et al (2009) Interplay of αsynuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A 106(14):5645–5650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreon AC, Moran CR, Gambin Y et al (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    Article  CAS  PubMed  Google Scholar 

  • Fesinmeyer RM, Peterson ES, Dyer RB et al (2005) Studies of helix fraying and solvation using C-13’ isotopomers. Protein Sci 14(9):2324–2332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flory JP (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  • Fontana A, Fassina G, Vita C et al. (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochem 25(8):1847–1851

    Article  CAS  Google Scholar 

  • Fontana A, Polverino de Laureto P et al (1993) Molecular aspects of proteolysis of globular proteins. In: van den Tweel W, Harder A, Buitelear M (eds) Protein stability and stabilization. Elsevier Science, Amsterdam, pp 101–110

    Chapter  Google Scholar 

  • Fontana A, Polverino de Laureto P, De Filippis V et al (1997a) Probing the partly folded states of proteins by limited proteolysis. Fold Des 2(2):R17–R26

    Article  CAS  PubMed  Google Scholar 

  • Fontana A, Zambonin M, Polverino de Laureto P et al (1997b) Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol 266(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Fontana A, de Laureto PP, Spolaore B et al (2012) Identifying disordered regions in proteins by limited proteolysis. Methods Mol Biol 896:297–318

    Article  CAS  PubMed  Google Scholar 

  • Forster TH (1948) Zwischen Molekulare Energie Wanderung und Fluoreszenz. Ann Phys (Leipzig) 2:55–75

    Article  CAS  Google Scholar 

  • Forster TH (1959) Transfer mechanisms of electroinc excitation. Discuss Fraday Soc 27:7–17

    Google Scholar 

  • Forster TH (1965) Delocalized excitation and excitation transfer. In: Sinaonglu O (ed) Modern quantum Chemistry, Istnabul lectures part III: action of light and organic crystals. Academic Press, New York, pp 93–137

    Google Scholar 

  • Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophysics 43:171–192

    Article  CAS  Google Scholar 

  • Frimpong AK, Abzalimov RR, Eyles SJ et al (2007) Gas-phase interference-free analysis of protein ion charge-state distributions: detection of small-scale conformational transitions accompanying pepsin inactivation. Anal Chem 79(11):4154–4161

    Article  CAS  PubMed  Google Scholar 

  • Fujio H, Takagaki Y, Ha YM et al (1985) Native and non-native conformation-specific antibodies directed to the loop region of hen egg-white lysozyme. J Biochem 98(4):949–962

    CAS  PubMed  Google Scholar 

  • Furie B, Furie BC (1979) Conformation-specific antibodies as probes of the gamma-carboxyglutamic acid-rich region of bovine prothrombin. Studies of metal-induced structural changes. J Biol Chem 254(19):9766–9771

    CAS  PubMed  Google Scholar 

  • Gabel F (2012) Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide. Methods Mol Biol 896:123–135

    CAS  PubMed  Google Scholar 

  • Gabel F, Jensen MR, Zaccai G et al (2009) Quantitative modelfree analysis of urea binding to unfolded ubiquitin using a combination of small angle X-ray and neutron scattering. J Am Chem Soc 131(25):8769–8771

    Article  CAS  PubMed  Google Scholar 

  • Garner E, Cannon P, Romero P et al (1998) Predicting disordered regions from amino acid sequence: common themes despite differing structural characterization. Genome Inform Ser Workshop Genome Inform 9:201–213

    CAS  PubMed  Google Scholar 

  • Gast K, Fiedler C (2012) Dynamic and static light scattering of intrinsically disordered proteins. Methods Mol Biol 896:137–161

    CAS  PubMed  Google Scholar 

  • Gerstein M (1998) How representative are the known structures of the proteins in a complete genome? A comprehensive structural census. Fold Des 3(6):497–512

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Montalban N, Natalello A, Garcia-Fruitos E et al (2008) In situ protein folding and activation in bacterial inclusion bodies. Biotechnol Bioeng 100(4):797–802

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994a) Determination of soluble and membrane protein structure by fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell biochem 23:329–362

    Google Scholar 

  • Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994b) Determination of soluble and membrane protein structure by fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell biochem 23:363–403

    Google Scholar 

  • Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994c) Determination of soluble and membrane protein structure by fourier transform infrared spectroscopy. III. Secondary structures. Subcell biochem 23:405–450

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Fink AL (1989) Conformational states of βlactamase: molten-globule states at acidic and alkaline pH with high salt. BioChem 28(3):945–952

    Article  CAS  Google Scholar 

  • Gratzer WB, Cowburn DA (1969) Optical activity of biopolymers. Nature 222(5192):426–431

    Article  CAS  PubMed  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. BioChem 8(10):4108–4116

    Article  CAS  Google Scholar 

  • Griffith WP, Kaltashov IA (2003) Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry. BioChem 42(33):10024–10033

    Article  CAS  Google Scholar 

  • Gumerov DR, Dobo A, Kaltashov IA (2002) Protein-ion charge-state distributions in electrospray ionization mass spectrometry: distinguishing conformational contributions from masking effects. Eur J Mass Spectrom 8(2):123–129

    Article  CAS  Google Scholar 

  • Haas E (2004) Fluorescence resonance energy transfer (FRET) and single molecule fluorescence detection studies of the mechanism of protein folding and unfolding. In: Kiefhaber JBa T (ed) Protein Folding Handbook. Part I, vol I. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim, pp 573–633

    Google Scholar 

  • Haas E (2012) Ensemble FRET methods in studies of intrinsically disordered proteins. Methods Mol Biol 895:467–498

    Article  CAS  PubMed  Google Scholar 

  • Habchi J, Martinho M, Gruet A et al (2012) Monitoring structural transitions in IDPs by site-directed spin labeling EPR spectroscopy. Methods Mol Biol 895:361–386

    Article  CAS  PubMed  Google Scholar 

  • He B, Wang K, Liu Y et al (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    Article  CAS  PubMed  Google Scholar 

  • Heller WT (2010) Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures. Acta Crystallogr D Biol Crystallogr 66(Pt 11):1213–1217

    Article  CAS  PubMed  Google Scholar 

  • Heraud P, Tobin MJ (2009) The emergence of biospectroscopy in stem cell research. Stem cell research 3(1):12–14

    Article  PubMed  Google Scholar 

  • Howlett GJ, Minton AP, Rivas G (2006) Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol 10(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Stultz CM (2008) The effect of a DeltaK280 mutation on the unfolded state of a microtubule-binding repeat in Tau. PLoS Comput Biol 4(8):e1000155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang R, Kubelka J, Barber-Armstrong W et al (2004) Nature of vibrational coupling in helical peptides: an isotopic labeling study. J Am Chem Soc 126(8):2346–2354

    Article  CAS  PubMed  Google Scholar 

  • Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382(2):191–206

    Article  CAS  PubMed  Google Scholar 

  • Hubbard SJ, Campbell SF, Thornton JM (1991) Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol 220(2):507–530

    Article  CAS  PubMed  Google Scholar 

  • Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbard SJ, Beynon RJ, Thornton JM (1998) Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng 11:349–359

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, McHaourab HS, Altenbach C et al (1996) Watching proteins move using site-directed spin labeling. Structure 4(7):779–783

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Gross A, Langen R et al (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8(5):649–656

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7(9):735–739

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM et al (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290

    Article  CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Kimzey AL, Masselon CD et al (2001a) Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci 10(3):560–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Kimzey AL, Masselon CD et al (2001b) Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10(7):1353–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Brown CJ, Lawson JD et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Article  CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Radivojac P, Brown CJ et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Invernizzi G, Grandori R (2007) Detection of the equilibrium folding intermediate of βlactoglobulin in the presence of trifluoroethanol by mass spectrometry. Rapid Commun Mass Spectrom 21(6):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Jackson M, Mantsch HH (1991) Protein secondary structure from FT-IR spectroscopy: correlation with dihedral angles from three-dimensional Ramachandran plots. Can J Chem 69:1639–1642

    Article  CAS  Google Scholar 

  • Jacrot B (1976) The study of biological structures by neurtron scattering from solution. Rep Prog Phys 39(10):911–953

    Article  CAS  Google Scholar 

  • Jensen MR, Markwick PR, Meier S et al (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17(9):1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Jensen MR, Salmon L, Nodet G et al (2010) Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. J Am Chem Soc 132(4):1270-1272

    Article  CAS  PubMed  Google Scholar 

  • Jirgensons B (1965) The cotton effects in the optical rotatory dispersion of proteins as new criteria of conformation. J Biol Chem 240:1064–1071

    CAS  PubMed  Google Scholar 

  • Jirgensons B, Hnilica LS (1965) The conformational changes of calf-thymus histone fractions as determined by the optical rotary dispersion. Biochim Biophys Acta 109(1):241–249

    Article  CAS  PubMed  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME et al (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724

    Article  CAS  PubMed  Google Scholar 

  • Johnson WC Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17:145–166

    Article  CAS  PubMed  Google Scholar 

  • Johnson DE, Xue B, Sickmeier MD et al (2012) High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. J Struct Biol 180(1):201–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalkhof S, Ihling C, Mechtler K et al (2005) Chemical cross-linking and high-performance fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Anal Chem 77(2):495–503

    Article  CAS  PubMed  Google Scholar 

  • Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72:212–213

    Article  CAS  Google Scholar 

  • Karst JC, Sotomayor-Perez AC, Ladant D et al (2012) Estimation of intrinsically disordered protein shape and time-averaged apparent hydration in native conditions by a combination of hydrodynamic methods. Methods Mol Biol 896:163–177

    CAS  PubMed  Google Scholar 

  • Kataoka M, Nishii I, Fujisawa T et al (1995) Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J Mol Biol 249(1):215–228

    Article  CAS  PubMed  Google Scholar 

  • Keiderling TA (1996) Vibrational circular dichroism: application to conformational analysis of biomolecules. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenumn Press, New York, pp 555

    Chapter  Google Scholar 

  • Keiderling TA, Xu Q (2002) Unfolded proteins studied with IR and VCD spectra. Adv Protein Chem 62:111–161

    Article  CAS  PubMed  Google Scholar 

  • Kelly SM, Price NC (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta 1338(2):161–185

    Article  CAS  PubMed  Google Scholar 

  • Kelly JG, Singh MN, Stringfellow HF et al (2009) Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based fourier-transform infrared microspectroscopy. Cancer Lett 274(2):208–217

    Article  CAS  PubMed  Google Scholar 

  • Keston A, Lospalluto J (1953) Simple ultrasensitive spectropolarimeters. Fed Proc 12:229

    Google Scholar 

  • Kim TD, Ryu HJ, Cho HI et al (2000) Thermal behavior of proteins: heat-resistant proteins and their heat-induced secondary structural changes. BioChemistry 39(48):14839–14846

    Article  CAS  PubMed  Google Scholar 

  • Kirste RG, Schulz GV, Stuhrmann HB (1969) Die Konformationsaenderung des Pottwal-Mesmyoglobins bei der reversiblen Denaturierung im pH-Bereich 7 bis 1. Z Naturforsch B 24:1385–1392

    Google Scholar 

  • Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102(2–3):377–390

    Article  CAS  PubMed  Google Scholar 

  • Kneipp J, Miller LM, Joncic M et al (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639(3):152–158

    Article  CAS  PubMed  Google Scholar 

  • Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36(2):147–227

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Yamamoto D, Ishikawa R et al (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76

    Article  CAS  PubMed  Google Scholar 

  • Kohn JE, Millet IS, Jacob J et al (2004) Random-coil behavior and the dimensins of chemically unfolded proteins. Proc Natl Acad Sci U S A 101(34):12491–12496

    Google Scholar 

  • Konermann L, Douglas DJ (1998) Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two-state from multi-state transitions. Rapid Commun Mass Spectrom 12(8):435–442

    Article  CAS  PubMed  Google Scholar 

  • Konno T, Tanaka N, Kataoka M et al (1997) A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I. Biochim Biophys Acta 1342(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Kretlow A, Wang Q, Kneipp J et al (2006) FTIR-microspectroscopy of prion-infected nervous tissue. Biochim Biophys Acta 1758(7):948–959

    Article  CAS  PubMed  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Melton JS, Sorensen DC et al (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83(2):723–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavery DN, McEwan IJ (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. BioChemistry 47(11):3360–3369

    Article  CAS  PubMed  Google Scholar 

  • Le Gall L, Romero PR, Cortese MS et al (2007) Intrinsic disorder in the protein data bank. J Biomol Struct Dyn 24(4):325–342

    Article  PubMed  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11(9):2067–2079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis JW, Tilton RF, Einterz CM et al (1985) New technique for measuring circular dichroism changes on a nanosecond time scale—application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin. J Phys Chem 89(2):289–294

    Article  CAS  Google Scholar 

  • Li C, Charlton LM, Lakkavaram A et al (2008) Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J Am Chem Soc 130(20):6310–6311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Uversky VN (eds) (2010) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. The Wiley series in protein and peptide science. Wiley, Hoboken

    Google Scholar 

  • Lynn A, Chandra S, Malhotra P et al (1999) Heme binding and polymerization by plasmodium falciparum histidine rich protein II: influence of pH on activity and conformation. FEBS Lett 459(2):267–271

    Article  CAS  PubMed  Google Scholar 

  • Maienschein-Cline MG, Londergan CH (2007) The CN stretching band of aliphatic thiocyanate is sensitive to solvent dynamics and specific solvation. J Phys Chem A 111(40):10020–10025

    Article  CAS  PubMed  Google Scholar 

  • Maiti NC, Apetri MM, Zagorski MG et al (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: αsynuclein. J Am Chem Soc 126(8):2399–2408

    Article  CAS  PubMed  Google Scholar 

  • Manas ES, Getahun Z, Wright WW et al (2000) Infrared spectra of amide groups in αhelical proteins: evidence for hydrogen bonding between helices and water. J Am Chem Soc 122:9883–9890

    Article  CAS  Google Scholar 

  • Manon F, Ebel C (2010) Analytical ultracentrifugation, a useful tool to probe intrinsically disordered proteins. In: Uversky VN, Longhi S (eds) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley series in protein and peptide science. Wiley, Hoboken, pp 433–449

    Google Scholar 

  • McMahon HA, Alfieri KN, Clark KAA et al (2010) Cyanylated cysteine: a covalently attached vibrational probe of protein-lipid contacts. J Phys Chem Lett 1(5):850–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the escherichia coli periplasm maintains αsynuclein disorder. J Mol Biol 355(5):893–897

    Article  CAS  PubMed  Google Scholar 

  • Measey T, Hagarman A, Eker F et al (2005) Side chain dependence of intensity and wavenumber position of amide I’ in IR and visible Raman spectra of XA and AX dipeptides. J Phys Chem B 109(16):8195–8205

    Article  CAS  PubMed  Google Scholar 

  • Milder SJ, Gold JS, Kliger DS (1990) Assignments of ground-state and excited-state spectra from time-resolved absorption and circular dichroism measurements of the 2E state of (D)-Cr(Bpy)3 3 +. Inorg Chem 29(13):2506–2511

    Article  CAS  Google Scholar 

  • Milhiet PE, Yamamoto D, Berthoumieu O et al (2010) Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS ONE 5(10):e13240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millet IS, Doniach S, Plaxco KW (2002) Toward a taxonomy of the denatured state: small angle studies of unfolded proteins. Adv Protein Chem 62:241–262

    Article  Google Scholar 

  • Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Mittag T, Orlicky S, Choy WY et al (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci U S A 105(46):17772–17777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittag T, Marsh J, Grishaev A et al (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morin B, Bourhis JM, Belle V et al (2006) Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling EPR spectroscopy. J Phys Chem B 110(41):20596–20608

    Article  CAS  PubMed  Google Scholar 

  • Moscowitz A (1962) Theoretical aspects of optical activity.1. Small molecules. Adv Chem Phys 4:67–112

    Google Scholar 

  • Nash P, Tang X, Orlicky S et al (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414(6863):514–521

    Article  CAS  PubMed  Google Scholar 

  • Natalello A, Doglia SM (2010) Intrinsically disordered proteins and induced folding studied by fourier transform infrared spectroscopy. In: Uversky VN, Longhi S (eds) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. (Wiley Series on Protein and Peptide Science). Wiley, Hoboken

    Google Scholar 

  • Natalello A, Ami D, Doglia SM (2012) Fourier transform infrared spectroscopy of intrinsically disordered proteins: measurement procedures and data analyses. Methods Mol Biol 895:229–244

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Meuvis J, Hendrix J et al (2010) Early aggregation steps in αsynuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98(7):1302–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nath S, Deng M, Engelborghs Y (2012) Fluorescence correlation spectroscopy to determine the diffusion coefficient of α-synuclein and follow early oligomer formation. Methods Mol Biol 895:499–506

    Article  CAS  PubMed  Google Scholar 

  • Neyroz P, Ciurli S (2012) Intrinsic fluorescence of intrinsically disordered proteins. Methods Mol Biol 895:435–440

    Article  CAS  PubMed  Google Scholar 

  • Neyroz P, Zambelli B, Ciurli S (2006) Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy. BioChemistry 45(29):8918–8930

    Article  CAS  PubMed  Google Scholar 

  • Novotny J, Bruccoleri RE (1987) Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Lett 211(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Oberg KA, Ruysschaert JM, Goormaghtigh E (2004) The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur J Biochem/FEBS 271(14):2937–2948

    Article  CAS  Google Scholar 

  • Oldfield CJ, Cheng Y, Cortese MS et al (2005) Coupled folding and binding with α-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470

    Article  CAS  PubMed  Google Scholar 

  • Oldfield CJ, Meng J, Yang JY et al (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1

    Article  CAS  Google Scholar 

  • Oroz J, Hervas R, Valbuena A et al (2012) Unequivocal single-molecule force spectroscopy of intrinsically disordered proteins. Methods Mol Biol 896:71–87

    CAS  PubMed  Google Scholar 

  • Orsini F, Ami D, Villa AM et al (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Methods 42(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277(2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Peng K, Obradovic Z, Vucetic S (2004) Exploring bias in the protein data bank using contrast classifiers. Pac Symp Biocomput:435–446

    Google Scholar 

  • Perez J, Vachette P, Russo D et al (2001) Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering. J Mol Biol 308(4):721–743

    Article  CAS  PubMed  Google Scholar 

  • Permyakov SE, Millett IS, Doniach S et al (2003) Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins 53(4):855–862

    Article  CAS  PubMed  Google Scholar 

  • Pervushin K, Vamvaca K, Vogeli B et al (2007) Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 14(12):1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Peters T Jr (1996) All about albumin: biochemistry, genetics, and medical application. Academic Press, New York

    Google Scholar 

  • Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrescu AJ, Receveur V, Calmettes P et al (1997) Small-angle neutron scattering by a strongly denatured protein: analysis using random polymer theory. Biophys J 72(1):335–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrescu AJ, Receveur V, Calmettes P et al (1998) Excluded volume in the configurational distribution of a strongly-dentaured protein. Protein Sci 7(6):1396–1403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pirman NL, Milshteyn E, Galiano L et al (2011) Characterization of the disordered-to-αhelical transition of IA by SDSL-EPR spectroscopy. Protein Sci 20(1):150–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. BioChem 20(1):33–37

    Article  CAS  Google Scholar 

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Uversky VN (1994) The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 341(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Pain RH, Semisotnov GV et al (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS lett 262(1):20–24

    Google Scholar 

  • Ptitsyn OB, Bychkova VE, Uversky VN (1995) Kinetic and equilibrium folding intermediates. Philos Trans R Soc Lond B Biol Sci 348(1323):35–41

    Article  CAS  PubMed  Google Scholar 

  • Putnam CD, Hammel M, Hura GL et al (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285

    Article  CAS  PubMed  Google Scholar 

  • Radivojac P, Obradovic Z, Smith DK et al (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ et al (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raussens V, Ruysschaert JM, Goormaghtigh E (2003) Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method. Anal Biochem 319(1):114–121

    Article  CAS  PubMed  Google Scholar 

  • Rawiso M, Duplessix R, Picot C (1987) Scattering function of polysterene. Macromolecules 20:630–648

    Article  CAS  Google Scholar 

  • Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13(1):55–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Receveur-Brechot V, Bourhis JM, Uversky VN et al (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45

    Article  CAS  PubMed  Google Scholar 

  • Rhodes G (1993) Crystallography made crystal clear: a guide for users of macromolecular models. Academic Press, San Diego

    Google Scholar 

  • Rodionova NA, Semisotnov GV, Kutyshenko VP et al (1989) Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol Biol (Mosk) 23(3):683–692

    Google Scholar 

  • Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Salvay AG, Communie G, Ebel C (2012) Sedimentation velocity analytical ultracentrifugation for intrinsically disordered proteins. Methods Mol Biol 896:91–105

    Article  CAS  PubMed  Google Scholar 

  • Sandal M, Valle F, Tessari I et al (2008) Conformational equilibria in monomeric α-synuclein at the single-molecule level. Plos Biology 6(1):99–108

    Article  CAS  Google Scholar 

  • Sane SU, Cramer SM, Przybycien TM (1999) A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy. Anal Biochem 269(2):255–272

    Article  CAS  PubMed  Google Scholar 

  • Schreurs S, Kluba M, Meuvis J et al (2012) Fluorescence lifetime measurements of intrinsically unstructured proteins: application to αsynuclein. Methods Mol Biol 895:461–466

    Article  CAS  PubMed  Google Scholar 

  • Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18(1):16–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuler B, Haran G (2008) Protein folding and dynamics from optical single molecule spectroscopy. In: Rigler R, Vogel H (eds) Single molecules and nanotechnology, vol 12. Springer, Berlin, pp 181–216 (Springer Series in Biophysics)

    Chapter  Google Scholar 

  • Schuler B, Muller-Spath S, Soranno A et al (2012) Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 896:21–45

    CAS  PubMed  Google Scholar 

  • Schultz CP, Liu KZ, Johnston JB et al (1997) Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes. J Mol Struct 408:253–256

    Article  Google Scholar 

  • Schulz DM, Ihling C, Clore GM et al (2004) Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes. BioChem 43(16):4703–4715

    Article  CAS  Google Scholar 

  • Schurtenberger P (2002) Static properties of polymers. In: Lindner P, Zemb T (eds) Neutrons, X-rays and light. Delta series, North Holland

    Google Scholar 

  • Schweitzer-Stenner R, Soffer JB, Toal S et al (2012a) Structural analysis of unfolded peptides by Raman spectroscopy. Methods Mol Biol 895:315–346

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer-Stenner R, Soffer JB, Verbaro D (2012b) Structure analysis of unfolded peptides I: vibrational circular dichroism spectroscopy. Methods Mol Biol 895:271–313

    Article  CAS  PubMed  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158(2):244–253

    Article  CAS  PubMed  Google Scholar 

  • Semisotnov GV, Rodionova NA, Kutyshenko VP et al (1987) Sequential mechanism of refolding of carbonic anhydrase B. FEBS lett 224 (1):9–13

    Google Scholar 

  • Semisotnov GV, Rodionova NA, Razgulyaev OI et al (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Seshadri S, Khurana R, Fink AL (1999) Fourier transform infrared spectroscopy in analysis of protein deposits. Methods Enzymol 309:559–576

    Article  CAS  PubMed  Google Scholar 

  • Shaw RA, Mantsch HH (1999) Vibrational biospectroscopy: from plants to animals to humans. A historical perspective. J Mol Struct 480–481:1–13

    Article  Google Scholar 

  • Shaw RA, Guijon FB, Paraskevas M et al (1999) Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution. Anal Quant Cytol Histol 21(4):292–302

    CAS  PubMed  Google Scholar 

  • Shibata M, Yamashita H, Uchihashi T et al (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5(3):208–212

    Article  CAS  PubMed  Google Scholar 

  • Simmons DA, Wilson DJ, Lajoie GA et al (2004) Subunit disassembly and unfolding kinetics of hemoglobin studied by time-resolved electrospray mass spectrometry. Biochem 43(46):14792–14801

    Article  CAS  Google Scholar 

  • Sinz A (2003) Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. J Mass Spectrom 38(12):1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 25(4):663–682

    Article  CAS  PubMed  Google Scholar 

  • Small EW, Fanconi B, Peticolas WL (1970) Raman spectra and the phonon dispersion of polyglycine. J Chem Phys 52(9):4369–4379

    Article  CAS  PubMed  Google Scholar 

  • Smith MD, Jelokhani-Niaraki M (2012) pH-induced changes in intrinsically disordered proteins. Methods Mol Biol 896:223–231

    CAS  PubMed  Google Scholar 

  • Smith DL, Deng Y, Zhang Z (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Smyth E, Syme CD, Blanch EW et al (2001) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58(2):138–151

    Article  CAS  PubMed  Google Scholar 

  • Sotomayor Perez AC, Karst JC, Davi M et al (2010) Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin. J Mol Biol 397(2):534–549

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor-Perez AC, Ladant D, Chenal A (2011) Calcium-induced folding of intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and oligomerization states. J Biol Chem 286(19):16997–17004

    Google Scholar 

  • Sotomayor-Perez AC, Karst JC, Ladant D et al (2012) Mean net charge of intrinsically disordered proteins: experimental determination of protein valence by electrophoretic mobility measurements. Methods Mol Biol 896:331–349

    CAS  PubMed  Google Scholar 

  • Steinberg IZ (1971) Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. Annu Rev Biochem 40:83–114

    Article  CAS  PubMed  Google Scholar 

  • Stryer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol 13(2):482–495

    Article  CAS  PubMed  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58(2):719–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stryer L, Thomas DD, Meares CF (1982) Diffusion-enhanced fluorescence energy transfer. Annu Rev Biophys Bioeng 11:203–222

    Article  CAS  PubMed  Google Scholar 

  • Sulatskaya AI, Povarova OI, Kuznetsova IM et al (2012) Binding stoichiometry and affinity of fluorescent dyes to proteins in different structural states. Methods Mol Biol 895:441–460

    Article  CAS  PubMed  Google Scholar 

  • Susi H, Byler DM (1986) Resolution-enhanced fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  CAS  PubMed  Google Scholar 

  • Susi H, Byler DM (1987) Fourier transform infrared study of proteins with parallel βchains. Arch Biochem Biophys 258(2):465–469

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI, Koch MHJ (2002) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66(10):1735–1782

    Article  Google Scholar 

  • Syme CD, Blanch EW, Holt C et al (2002) A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur J Biochem/FEBS 269(1):148–156

    Article  CAS  Google Scholar 

  • Szollosi E, Bokor M, Bodor A et al (2008) Intrinsic structural disorder of DF31, a Drosophila protein of chromatin decondensation and remodeling activities. J Proteome Res 7(6):2291–2299

    Article  PubMed  Google Scholar 

  • Tadesse L, Nazarbaghi R, Walters L (1991) Isotopically enhanced infrared spectroscopy: a novel method for examining secondary structure at specific sites in conformationally heterogeneous peptides. J Am Chem Soc 113:7036–7037

    Article  CAS  Google Scholar 

  • Takaoka Y, Kioi Y, Morito A et al (2013) Quantitative comparison of protein dynamics in live cells and in vitro by in-cell (19)F-NMR. Chem Commun 49(27):2801–2803

    Article  CAS  Google Scholar 

  • Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282

    Article  CAS  PubMed  Google Scholar 

  • Tanthanuch W, Thumanu K, Lorthongpanich C et al (2010) Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy. J Mol Struct 967:189–195

    Article  CAS  Google Scholar 

  • Tantos A, Tompa P (2012) Identification of intrinsically disordered proteins by a special 2D electrophoresis. Methods Mol Biol 896:215–222

    CAS  PubMed  Google Scholar 

  • Tcherkasskaya O, Uversky VN (2001) Denatured collapsed states in protein folding: example of apomyoglobin. Proteins 44(3):244–254

    Article  CAS  PubMed  Google Scholar 

  • Tcherkasskaya O, Uversky VN (2003) Polymeric aspects of protein folding: a brief overview. Protein Pept Lett 10(3):239–245

    Article  CAS  PubMed  Google Scholar 

  • Tcherkasskaya O, Davidson EA, Uversky VN (2003) Biophysical constraints for protein structure prediction. J Proteome Res 2(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Theillet FX, Binolfi A, Frembgen-Kesner T et al (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114(13):6661–6714

    Google Scholar 

  • Thomas GJ (2002) New structural insights from Raman spectroscopy of proteins and their assemblies. Biopolymers 67(4–5):214–225

    Article  PubMed  CAS  Google Scholar 

  • Timm DE, Vissavajjhala P, Ross AH et al (1992) Spectroscopic and chemical studies of the interaction between nerve growth factor (NGF) and the extracellular domain of the low affinity NGF receptor. Protein Sci 1(8):1023–1031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  CAS  PubMed  Google Scholar 

  • Trester-Zedlitz M, Kamada K, Burley SK et al (2003) A modular cross-linking approach for exploring protein interactions. J Am Chem Soc 125(9):2416–2425

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkov P, Shaul Y (2012) Determination of IUP based on susceptibility for degradation by default. Methods Mol Biol 895:3–18

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkov P, Asher G, Paz A et al (2008) Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20 S proteasome. Proteins 70(4):1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochem 32(48):13288–13298

    Article  CAS  Google Scholar 

  • Uversky VN (1994) Gel-permeation chromatography as a unique instrument for quantitative and qualitative analysis of protein denaturation and unfolding. Int J Bio-Chromatography 1:103–114

    CAS  Google Scholar 

  • Uversky VN (2002a) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uversky VN (2002b) What does it mean to be natively unfolded? Eur J Biochem/FEBS 269(1):2–12

    Article  CAS  Google Scholar 

  • Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter Ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28(7–8):305–325

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2012) Size-exclusion chromatography in structural analysis of intrinsically disordered proteins. Methods Mol Biol 896:179–194

    CAS  PubMed  Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uversky VN, Dunker AK (eds) (2012a) Experimental tools for the analysis of intrinsically disordered protein: volume I methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Uversky VN, Dunker AK (eds) (2012b) Experimental tools for the analysis of intrinsically disordered protein: volume II methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Uversky VN, Dunker AK (2012c) Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anal Chem 84(5):2096–2104

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Ptitsyn OB (1994) “Partly folded” state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of β-lactamase at low temperature. BioChem 33(10):2782–2791

    Article  CAS  Google Scholar 

  • Uversky VN, Ptitsyn OB (1996a) All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1(2):117–122

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Ptitsyn OB (1996b) Further evidence on the equilibrium “pre-molten globule state”: four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol 255(1):215–228

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Kutyshenko VP, Protasova N et al (1996) Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 5(9):1844–1851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Millett IS et al (1999) Natively unfolded human prothymosin α adopts partially folded collapsed conformation at acidic pH. BioChemistry 38(45):15009–15016

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000a) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Millett IS et al (2000b) Zn(2 +)-mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha. Biochem Biophys Res Commun 267(2):663–668

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in αsynuclein fibril formation. J Biol Chem 276(14):10737–10744

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Permyakov SE, Zagranichny VE et al (2002) Effect of zinc and temperature on the conformation of the gamma subunit of retinal phosphodiesterase: a natively unfolded protein. J Proteome Res 1(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  • Vacic V, Uversky VN, Dunker AK et al (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8:211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382(4):971–977

    Article  CAS  PubMed  Google Scholar 

  • Van Der Meer WB, Coker G III et al (1994) Resonance energy transfer theory and sata. VCH Publishers, Inc., New York

    Google Scholar 

  • Vassilenko KS, Uversky VN (2002) Native-like secondary structure of molten globules. Biochim Biophys Acta 1594(1):168–177

    Article  CAS  PubMed  Google Scholar 

  • Vercammen J, Maertens G, Gerard M et al (2002) DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy. J Biol Chem 277(41):38045–38052

    Article  CAS  PubMed  Google Scholar 

  • Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins 19(2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Völkel R, Eisner M, Weible KJ (2003) Miniaturized imaging systems. Microelectron Eng 67–68(1):461–472

    Article  CAS  Google Scholar 

  • Walsh STR, Cheng RP, Wright WW et al (2003) The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR. Protein Sci 12(3):520–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh MJ, Hammiche A, Fellous TG et al (2009) Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy. Stem Cell Res 3(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  CAS  PubMed  Google Scholar 

  • Weninger K, Bowen ME, Choi UB et al (2008) Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16(2):308–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams RW (1986) Protein secondary structure-analysis using Raman amide-I and Amide-Iii spectra. Methods Enzymol 130:311–331

    Article  CAS  PubMed  Google Scholar 

  • Williams RM, Obradovi Z, Mathura V et al (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput:89–100

    Google Scholar 

  • Wilson IA, Haft DH, Getzoff ED et al (1985) Identical short peptide sequences in unrelated proteins can have different conformations: a testing ground for theories of immune recognition. Proc Natl Acad Sci U S A 82(16):5255–5259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood BR, Chernenko T, Matthaus C et al (2008) Shedding new light on the molecular architecture of oocytes using a combination of synchrotron fourier transform-infrared and Raman spectroscopic mapping. Anal Chem 80(23):9065–9072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woody RW (1968) Improved calculation of the n-pi rotational strength in polypeptides. J Chem Phys 49(11):4797–4806

    Article  CAS  PubMed  Google Scholar 

  • Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  CAS  PubMed  Google Scholar 

  • Woycechowsky KJ, Choutko A, Vamvaca K et al (2008) Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 47(51):13489–13496

    Article  CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Ermolenkov VV, He W et al (2005) Lysozyme fibrillation: deep UV Raman spectroscopic characterization of protein structural transformation. Biopolymers 79(1):58–61

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Ermolenkov VV, Uversky VN et al (2008) Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study. J Biophotonics 1(3):215–229

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Uchihashi T, Kodera N et al (2008) Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19(38):384009

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D, Uchihashi T, Kodera N et al (2010) High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods Enzymol 475:541–564

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Habchi J, Longhi S et al (2012) Monitoring structural transitions in IDPs by vibrational spectroscopy of cyanylated cysteine. Methods Mol Biol 895:245–270

    Article  CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2 (4):522–531

    Google Scholar 

  • Zhang M, Gumerov DR, Kaltashov IA et al (2004) Indirect detection of protein-metal binding: interaction of serum transferrin with In3 + and Bi3 +. J Am Soc Mass Spectrom 15(11):1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Isaacs NW, Hecht L et al (2005) Raman optical activity: a tool for protein structure analysis. Structure 13(10):1409–1419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uversky, V. (2015). Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. In: Felli, I., Pierattelli, R. (eds) Intrinsically Disordered Proteins Studied by NMR Spectroscopy. Advances in Experimental Medicine and Biology, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-20164-1_7

Download citation

Publish with us

Policies and ethics