Skip to main content

Generalized Involution Models of Projective Reflection Groups

  • Chapter
Combinatorial Methods in Topology and Algebra

Part of the book series: Springer INdAM Series ((SINDAMS,volume 12))

  • 1226 Accesses

Abstract

The main motivation of this work was to investigate the generalized involution models of the projective reflection groups G(r, p, q, n). This family of groups parametrizes all quotients of the complex reflection groups G(r, p, n) by scalar subgroups. Our classification is ultimately incomplete, but we provide several necessary and sufficient conditions for generalized involution models to exist in various cases. In the process we have been led to consider and solve several intermediate problems concerning the structure of projective reflection groups. We derive a simple criterion for determining whether two groups G(r, p, q, n) and G(r, p′, q′, n) are isomorphic. We also describe explicitly the form of all automorphisms of G(r, p, q, n), outside a finite list of exceptional cases. Building on prior work, this allows us to prove that G(r, p, 1, n) has a generalized involution model if and only if \(G(r,p,1,n)\mathop{\cong}G(r,1,p,n)\). We also classify which groups G(r, p, q, n) have generalized involution models when n = 2, or q is odd, or n is odd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adin, R., Postnikov, A., Roichman, Y.: Combinatorial Gelfand models. J. Algebra 320, 1311–1325 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adin, R., Postnikov, A., Roichman, Y.: A Gelfand model for wreath products. Israel J. Math. 179, 381–402 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baddeley, R.W.: Some multiplicity-free characters of finite groups. Ph.D. Thesis, Cambridge (1991)

    Google Scholar 

  4. Biagioli, R., Caselli, F.: Weighted enumerations on projective reflection groups. Adv. Appl. Math. 48, 249–268 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bump, D., Ginzburg, D.: Generalized Frobenius-Schur numbers. J. Algebra 278, 294–313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caselli, F.: Involutory reflection groups and their models. J. Algebra 324, 370–393 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caselli, F.: Projective reflection groups. Israel J. Math. 185, 155–188 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caselli, F., Fulci, R.: Gelfand models and Robinson-Schensted correspondence. J. Algebraic Comb. 36, 175–207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Inglis, N.F.J., Richardson, R.W., Saxl, J.: An explicit model for the complex representations of S n . Arch. Math. (Basel) 54(3), 258–259 (1990)

    Google Scholar 

  10. Lusztig, G.: A bar operator for involutions in a Coxeter group (2012, preprint). arXiv:1112.0969v3

  11. Lusztig, G., Vogan, D.A.: Hecke algebras and involutions in Weyl groups. Bull. Inst. Math. Acad. Sin. (N.S.) 7, 323–354 (2012)

    Google Scholar 

  12. Lusztig, G., Vogan, D.A.: Quasisplit Hecke algebras and symmetric spaces (2012, preprint). arXiv:1206.0634v2

  13. Marberg, E.: Automorphisms and generalized involution models of finite complex reflection groups. J. Algebra 334, 295–320 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marberg, E.: Generalized involution models for wreath products. Israel J. Math 192, 157–195 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Marin, I., Michel, J.: Automorphisms of complex reflection groups. Represent. Theory 14, 747–788 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vinroot, C.R., Involution models of finite Coxeter groups. J. Group Theory 11, 333–340 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caselli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caselli, F., Marberg, E. (2015). Generalized Involution Models of Projective Reflection Groups. In: Benedetti, B., Delucchi, E., Moci, L. (eds) Combinatorial Methods in Topology and Algebra. Springer INdAM Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-20155-9_5

Download citation

Publish with us

Policies and ethics