Skip to main content

Part of the book series: Springer INdAM Series ((SINDAMS,volume 12))

  • 1237 Accesses

Abstract

In this paper we partition in classes the set of matroids of fixed dimension on a fixed vertex set. In each class we identify two special matroids, respectively with minimal and maximal h-vector in that class. Such extremal matroids also satisfy a long-standing conjecture of Stanley. As a byproduct of this theory we establish Stanley’s conjecture in various cases, for example the case of Cohen-Macaulay type less than or equal to 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björner, A.: The homology and shellability of matroids and geometric lattices. In Matroid applications, volume 40 of Encyclopedia Mathematics and its Applications, Cambridge University Press, Cambridge, pp. 226–283 (1992)

    Google Scholar 

  2. Boij, M., Migliore, J., Mirò-Roig, R., Nagel, U., Zanello, F.: On the shape of a pure O-sequence. Mem. Am. Math. Soc. (to appear)

    Google Scholar 

  3. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics vol. 39. Cambridge University press, Cambridge (1993)

    Google Scholar 

  4. Chari, M.K.: Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Am. Math. Soc. 349(10), 3925–3943 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it

  6. Hà, H.T., Stokes, E., Zanello, F.: Pure O-sequences and matroid h-vectors Ann. Comb. 17(3), 495–508 (2013). http://arxiv.org/abs/1006.0325

  7. Hartshorne, R.: A property of A-sequences. Bull. de laplace S.M.F. 94, 61–65 (1966)

    Google Scholar 

  8. Hibi, T.: What can be said about pure O-sequences?. J. Combin. Theory Ser. A 50(2), 319–322 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hibi, T.: Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices. Pac. J. Math. 154(2), 253–264 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iarrobino, A.: Compressed algebras: Artin algebras having given socle degrees and minimal length. Trans. Am. Math. Soc. 285, 337–378 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Massey, D., Simion, R., Stanley, R., Vertigan, D., Welsh, D., Ziegler, G.: Lê numbers of arrangements and matroid identities. J. Combin. Theory Ser. B 70(1), 118–133 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Merino, C.: The chip firing game and matroid complexes, Discrete Mathematics and Theoretical Computer Science. Procedings, AA, Maison de l’informatique et des mathématiques discrétes (MIMD), Paris, pp. 245–255 (2001)

    Google Scholar 

  13. Merino, C., Steven D. Noble, M. Ramirez-Ibanez, S.D., Villarroel, R.: On the structure of the h-vector of a paving matroid. European J. Combin. 33(8), 1787–1799 (2012). http://arxiv.org/abs/1008.2031

  14. Minh, N.C., Trung, N.V.: Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals. Adv. Math. 226, 1285–1306 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oh, S.: Generalized permutohedra, h-vector of cotransversal matroids and pure O-sequences European J. Combin. 20(3), (2013). http://arxiv.org/abs/1005.5586

  16. Oxley, J.: Matroid Theory, 2nd edn. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford (2011)

    Google Scholar 

  17. Schweig, J.: On the h-Vector of a Lattice Path Matroid. Electron. J. Combin. 17(1), (2010)

    Google Scholar 

  18. Speyer, D.: A matroid invariant via the K-theory of the Grassmannian. Adv. Math. 221(3), 882–913 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stanley, R.P.: Cohen-Macaulay Complexes, in Higher Combinatorics, pp. 51–62. Reidel Dordrecht, Boston (1977)

    Google Scholar 

  20. Stanley, R.P.: Combinatorics and Commutative Algebra. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  21. Stokes, E.: The h-vector of matroids and the arithmetic degree of squarefree strongly stable ideals, Ph.D. thesis, University of Kentucky (2008)

    Google Scholar 

  22. Stokes, E.: The h-vectors of 1-dimensional Matroid Complexes and a Conjecture of Stanley. preprint (2009). http://arxiv.org/abs/0903.3569

  23. Swartz, E.: Lower bounds for h-vectors of k-CM, independence, and broken circuit complexes. SIAM J. Discrete Math. 18(3), 647–661 (2004/2005)

    Google Scholar 

  24. Varbaro, M.: Symbolic powers and matroids. Proc. Am. Math. Soc. 139(7), 2357–2366 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Constantinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Constantinescu, A., Varbaro, M. (2015). h-Vectors of Matroid Complexes. In: Benedetti, B., Delucchi, E., Moci, L. (eds) Combinatorial Methods in Topology and Algebra. Springer INdAM Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-20155-9_29

Download citation

Publish with us

Policies and ethics