Skip to main content

GSH Partitioning Between the Nucleus and Cytosol in Arabidopsis thaliana

  • Chapter
Molecular Physiology and Ecophysiology of Sulfur

Abstract

The thiol tripeptide, glutathione (GSH) is an essential redox metabolite in plant cells but little information is available concerning GSH partitioning between the cytosol and nucleus. In this article we discuss the evidence concerning the distribution of GSH between the nucleus and the cytosol. The glutathione redox potential was similar in the nucleus and cytosol of developing radicles of Arabidopsis thaliana seeds after germination. However, in the arrested embryonic root meristem of the root meristemless 1 (rml1) mutant that have less than 5 % GSH of the wild type, GSH was predominantly localised in the nuclei. This was also the case in wild type roots treated with the auxin transport inhibitor, N-1-napthylphthalamic acid (NPA), which have decreased root glutathione levels. GSH was co-localised with nuclear DNA at G1 and G2 in A. thaliana cultures in which the cell cycle was synchronised. The functions of GSH are considered in terms of cell cycle regulation and the regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293

    Article  CAS  PubMed  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng JC, Seeley KA, Sung ZR (1995) RML1 and RML2, Arabidopsis genes required for cell-proliferation at the root-tip. Plant Physiol 107:365–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Dong Y-P, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier P, Foyer CH (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  Google Scholar 

  • Diaz-Vivancos P, Wolff T, Markovic J, Pallardó FV, Foyer CH (2010b) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178

    Article  CAS  PubMed  Google Scholar 

  • García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830:3304–3316

    Article  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013a) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han Y, Mhamdi A, Chaouch S, Noctor G (2013b) Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ 36:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–20424

    Article  CAS  PubMed  Google Scholar 

  • Markovic J, Mora NJ, Broseta AM, Gimeno A, de-la-Concepción N, Viña J, Pallardó FV (2009) Nuclear GSH depletion impairs cell proliferation in 3T3 fibroblasts. PLoS One 29, e6413

    Article  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–397

    Article  CAS  Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvisb R, Haasc F, Nieuwlanda J, Limb B, Müllerc C, Salcedo-Sorae E, Krusec C, Orseld M, Hellc R, Millerd AJ, Braye P, Foyer CH, Murray JAH, Meyerc AJ, Cobbettb CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 107:2331–2336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    CAS  PubMed  Google Scholar 

  • Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Menon SG, Sarsour EH, Spitz DR, Higashikubo R, Sturm M, Zhang H, Goswami PC (2003) Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res 63:2109–2117

    CAS  PubMed  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. In: Millar H (ed) The Arabidopsis book 9. American Society of Plant Biologists, Rockville, pp 1–32

    Google Scholar 

  • Noctor G, Mhamdi A, Queval G, Chaouch S, Han Y, Neukermans J, Foyer CH (2012) Glutathione functions in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Pallardó FV, Markovic J, Garcia JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Asp Med 30:77–85

    Article  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardo FV, Foyer CH (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localisation of glutathione during exponential growth of Arabidopsis cells in culture. Mol Plant 2:442–456

    Article  CAS  PubMed  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans H (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rennenberg H (1982) Glutathione metabolism and possible biological roles in higher-plants. Phytochemistry 21:2771–2781

    Article  CAS  Google Scholar 

  • Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 38:266–279. doi:10.1111/pce.12252

  • Shanmugam V, Tsednee M, Yeh KC (2012) Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69:1006–10017

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, Palmea K (2013) Plastid-localized glutathione reductase 2–regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25:4451–4468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zechmann B, Koffler BE, Russell SD (2011) Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biol 11:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by EU FP7: KBBE-2012-6-311840 (ECOSEED: ADS). PDV acknowledges the CSIC and the Spanish Ministry of Economy and Competitiveness for his ‘Ramon & Cajal’ research contract, co-financed by FEDER funds. YPD thanks the China Scholarship Council (China) for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine H. Foyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Simone, A., Dong, Y., Vivancos, P.D., Foyer, C.H. (2015). GSH Partitioning Between the Nucleus and Cytosol in Arabidopsis thaliana . In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_4

Download citation

Publish with us

Policies and ethics