Skip to main content

Partitioning of Sulfur Between Primary and Secondary Metabolism

  • Chapter
Molecular Physiology and Ecophysiology of Sulfur

Part of the book series: Proceedings of the International Plant Sulfur Workshop ((PIPSW))

  • 882 Accesses

Abstract

Sulfur is an essential nutrient for all organisms. Plants are able to take up inorganic sulfate and assimilate it into a range of bioorganic molecules, either after reduction to sulfide, or activation to 3′-phosphoadenosine 5′-phosphosulfate. While the regulation of the reductive part of sulfate assimilation and the synthesis of cysteine has been studied extensively in the past three decades, much less attention has been paid to the control of synthesis of sulfated compounds. Only recently have the genes and enzymes activating sulfate and transferring it onto suitable acceptors been investigated in detail with the emphasis on understanding the control of partitioning of sulfur between the two branches of sulfate assimilation. These investigations brought a range of interesting new findings, such as a common regulatory network of sulfate assimilation and glucosinolate synthesis, and identified new components of the pathway, e.g. PAPS transporter or the 2′(3′),5′-diphosphoadenosine phosphatase. Here the new findings are reviewed and put into context of primary and secondary sulfur metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–674

    Article  CAS  PubMed  Google Scholar 

  • Bick JA, Setterdahl AT, Knaff DB, Chen Y, Pitcher LH, Zilinskas BA, Leustek T (2001) Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40:9040–9048

    Article  CAS  PubMed  Google Scholar 

  • Dejima K, Seko A, Yamashita K, Gengyo-Ando K, Mitani S, Izumikawa T, Kitagawa H, Sugahara K, Mizuguchi S, Nomura K (2006) Essential roles of 3′-phosphoadenosine 5′-phosphosulfate synthase in embryonic and larval development of the nematode Caenorhabditis elegans. J Biol Chem 281:11431–11440

    Article  CAS  PubMed  Google Scholar 

  • Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Flugge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flugge UI (2012) The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5′-phosphosulfate to the cytosol. Plant Cell 24:4187–4204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glaser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  Google Scholar 

  • Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    Article  CAS  PubMed  Google Scholar 

  • Huseby S, Koprivova A, Lee BR, Saha S, Mithen R, Wold AB, Bengtsson GB, Kopriva S (2013) Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J Exp Bot 64:1039–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain A, Leustek T (1994) A cDNA clone for 5′-adenylylphosphosulfate kinase from Arabidopsis thaliana. Plant Physiol 105:771–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MS, Haas FH, Samami AA, Gholami AM, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BH, von Arnim AG (2009) FIERY1 regulates light-mediated repression of cell elongation and flowering time via its 3′(2′),5′-bisphosphate nucleotidase activity. Plant J 58:208–219

    Article  CAS  PubMed  Google Scholar 

  • Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci U S A 106:15067–15072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot-Lond 97:479–495

    Article  CAS  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55:1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Muheim R, Koprivova A, Trachsel N, Catalano C, Suter M, Brunold C (1999) Light regulation of assimilatory sulphate reduction in Arabidopsis thaliana. Plant J 20:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Mugford SG, Matthewman C, Koprivova A (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Rep 28:1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci 3:163

    Article  PubMed Central  PubMed  Google Scholar 

  • Koprivova A, Giovannetti M, Baraniecka P, Lee BR, Grondin C, Loudet O, Kopriva S (2013) Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. Plant Physiol 163:1133–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC Jr, Deyrup A, Schwartz NB (1998) A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc Natl Acad Sci U S A 95:8681–8685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Leustek T (1998) APS kinase from Arabidopsis thaliana: genomic organization, expression, and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun 247:171–175

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Koprivova A, Kopriva S (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J 67:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Huseby S, Koprivova A, Chetelat A, Wirtz M, Mugford ST, Navid E, Brearley C, Saha S, Mithen R, Hell R, Farmer EE, Kopriva S (2012) Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response? PLoS One 7:e39425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat Genet 39:896–900

    Article  CAS  PubMed  Google Scholar 

  • Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flugge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21:910–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mugford SG, Matthewman CA, Hill L, Kopriva S (2010) Adenosine-5′-phosphosulfate kinase is essential for Arabidopsis viability. FEBS Lett 584:119–123

    Article  CAS  PubMed  Google Scholar 

  • Mugford SG, Lee BR, Koprivova A, Matthewman C, Kopriva S (2011) Control of sulfur partitioning between primary and secondary metabolism. Plant J 65:96–105

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Ravilious GE, Jez JM (2012a) Nucleotide binding site communication in Arabidopsis thaliana adenosine 5′-phosphosulfate kinase. J Biol Chem 287:30385–30394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravilious GE, Jez JM (2012b) Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat Prod Rep 29:1138–1152

    Article  CAS  PubMed  Google Scholar 

  • Ravilious GE, Nguyen A, Francois JA, Jez JM (2012) Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase. Proc Natl Acad Sci U S A 109:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL (2010) The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant Physiol 152:1357–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez VM, Chetelat A, Majcherczyk P, Farmer EE (2010) Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves. Plant Physiol 152:1335–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276:3941–3946

    Article  CAS  PubMed  Google Scholar 

  • Sonderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2(12):e1322

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Tsakraklides G, Martin M, Chalam R, Tarczynski MC, Schmidt A, Leustek T (2002) Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J 32:879–889

    Article  CAS  PubMed  Google Scholar 

  • Underhill EW, Wetter LR, Chisholm MD (1973) Biosynthesis of glucosinolates. Biochem Soc Symp 38:303–326

    Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Article  CAS  PubMed  Google Scholar 

  • Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yatusevich R, Mugford SG, Matthewman C, Gigolashvili T, Frerigmann H, Delaney S, Koprivova A, Flugge UI, Kopriva S (2010) Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J 62:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kopriva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kopriva, S. (2015). Partitioning of Sulfur Between Primary and Secondary Metabolism. In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_2

Download citation

Publish with us

Policies and ethics