Skip to main content

Identification of the Genes for Intracellular Glutathione Degradation in Arabidopsis thaliana

  • Chapter
Molecular Physiology and Ecophysiology of Sulfur

Abstract

To understand the physiological role of glutathione (GSH) degradation and how it contributes to other sulfur metabolites, it is necessary to determine the GSH degradation pathway. In mammals it has long been believed that GSH is degraded outside of the cell by γ-glutamyl transpeptidase (GGT). However most GSH exists inside the cell. In Arabidopsis it was suggested that GSH is catabolized by the GGT-independent pathway via 5-oxoproline, by γ-glutamyl cyclotransferase (GGCT). This study aims to identify gene(s) that code the degradation of GSH in the cytosol. In Saccharomyces cerevisiae, the DUG2-DUG3 complex degrades GSH to Glu and Cys-Gly then DUG1 cleaves the peptide bond of Cys-Gly. None of the dugΔ strains are able to grow on the medium where GSH is the sole sulfur source. Transformants of dugΔ strains with an A. thaliana cDNA library were screened on a medium with GSH as the sole sulfur source. Sequences of inserts in positive clones were searched against A. thaliana cDNA database by BLAST. One A. thaliana gene complemented dug1Δ and four genes complimented dug2Δ and dug3Δ strains. The same genes complemented both of dug2Δ and dug3Δ strains, indicating that in Arabidopsis GSH is degraded by single proteins, unlike in yeast in which complexed proteins are required. Two pathways were suggested for GSH degradation in Arabidopsis, GGCT pathway and AtDUG pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Fricker MD, Meyer AJ (2001) Confocal imaging of metabolism in vivo: pitfalls and possibilities. J Exp Bot 52:631–640

    Article  CAS  PubMed  Google Scholar 

  • Fricker MD, May M, Meyer AJ, Sheard N, White NS (2000) Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc 198:162–171

    Article  CAS  PubMed  Google Scholar 

  • Ganguli D, Kumar C, Bachhawat AK (2007) The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 175:1137–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grzam A, Martin MN, Hell R, Meyer AJ (2007) Gamma-glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett 581:3131–3138

    Article  CAS  PubMed  Google Scholar 

  • Harding CO, Williams P, Wagner E, Chang DS, Wild K, Colwell RE, Wolff JA (1997) Mice with genetic γ-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. J Biol Chem 272:12560–12567

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wiseman AL, Kala G, Kala SV, Matzuk MM, Lieberman MW (2000) Reproductive defects in γ-glutamyl transpeptidase-deficient mice. Endocrinology 141:4270–4277

    CAS  PubMed  Google Scholar 

  • Kumar A, Tikoo S, Maity S, Sengupta S, Sengupta S, Kaur BAK (2012) Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep 13:1095–1101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chevez-Barrios P, Wang Y, Habib GM, Goodman JC, Huang SL, Lebovitz RM, Matzuk MM (1996) Growth retardation and cysteine deficiency in γ-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A 93:7923–7926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin MN, Saladores PH, Lambert E, Hudson AO, Leustek T (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol 144:1715–1732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meister A, Larsson A (1995) Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 1. McGraw-Hill, New York, pp 1461–1495

    Google Scholar 

  • Minet M, Dufour M-E, Lacroute F (1992) Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2:417–422

    CAS  PubMed  Google Scholar 

  • Mumberg D, Müller R, Funk M (1995) Yeast vectors for controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr AF, Xiang C, Oliver DJ (2007a) Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49:865–877

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Zhao P, Xiang C, Oliver DJ (2007b) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 49:878–888

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol 148:1603–1613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Fukuyama K, Oliver DJ (2009) Roles of γ-glutamyl transpeptidase and γ-glutamyl cyclotransferase in glutathione and glutathione-conjugate metabolism in plants. Adv Bot Res 252:87–113

    Article  Google Scholar 

  • Orlowski M, Richman P, Meister A (1969) Isolation and properties of γ-L-glutamylcyclotransferase from human brain. Biochemistry 8:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Paulose B, Chhikara S, Coomey J, Jung H, Vatamaniuk O, Dhankher OP (2013) A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25:4580–4595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rennenberg H, Steinkamp R, Polle A (1980) Evidence for the participation of a 5-oxoprolinase in degradation of glutathione in Nicotiana tabacum. Z Naturforsch 35c:708–711

    CAS  Google Scholar 

  • Steinkamp R, Rennenberg H (1985) Degradation of glutathione in plant cells: evidence against the participation of a γ-glutamyl transpeptidase. Z Naturforsch 40c:29–33

    CAS  Google Scholar 

  • Steinkamp R, Rennenberg H (1987) γ-Glutamylcyclotransferase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiol Plant 69:499–503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Young Scientists (B) (No. 21770057) and Funds for Development of Human Resources in Science and Technology “Supporting positive activities for female researchers”, the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) to N, O-O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Ohkama-Ohtsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ohkama-Ohtsu, N., Kitaiwa, T., Yokoyama, T. (2015). Identification of the Genes for Intracellular Glutathione Degradation in Arabidopsis thaliana . In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_19

Download citation

Publish with us

Policies and ethics