Skip to main content

Principles of Neural Information Processing

  • Chapter
  • First Online:
Principles of Neural Information Processing

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 27))

  • 2874 Accesses

Abstract

To analyse the working of the brain it is our intention here to develop a framework that encompasses its most important aspects in functional terms. This intention seems solvable only if one chooses a task that makes use of all parts of the brain, and keeps the level of the description and dimensionality of this task manageable. As a result, although the description should include the numerous details that we know, not every single one needs quantifying. Our view is that the organization of behavior is the task per se that has to be solved by brains. We have therefore chosen this task as the framework for explaining how the brain works, knowing that it has gaps which—so we hope—may be filled by realistic hypotheses. Our emphasis is on the development of principles and strategies. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, we have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also systems and signal theory. The latter provides a well-tested system of concepts, and opens the way to physical laws and limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aflalo TN, Graciano MSA (2006) Possible origines of the complex topograhic organization of motor cortex: a reduction of a multidimentional space onto a two dimensional array. J Neurosci 26:6288–6297

    Google Scholar 

  • Aflalo TN, Graciano MSA (2011) Organization of the macaque extrastriate visual cortex reexamined using the principle of spatial continuity function. J Neurophysiol 1:305–320

    Article  Google Scholar 

  • Ay N, Bertschinger N, Der R, Güttler F, Olbrich E (2008) Predictive information and explorative behavior of autonomous robots. Eur Phys J B 63:329–339

    Google Scholar 

  • Ballard DH (1997) Natural computation. MIT Press, Cambridge

    Google Scholar 

  • Binder JR, Desai R (2011) Neurobiology of sementic memory. Trends Cogn Sci 15:527–536

    Article  Google Scholar 

  • Birbaumer N, Schmidt RF (2010) Biologische Psychologie. Springer, New York

    Google Scholar 

  • Byrne P, Becker S, Burgess P (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375

    Article  Google Scholar 

  • Cang J, Feldheim DA (2013) Developmental mechanism of topographic map formation and alignement. Annu Rev Neurosci 36:51–77

    Article  Google Scholar 

  • Cisek P, Puskas GA, El-Murr S (2009) Decisions in changing conditions: the urgency-gating model. J Neurosci 29(37):11560–11571

    Article  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of choices. Annu Rev Neurosci 33:269–299

    Article  Google Scholar 

  • Cisek P, Pastor-Bernier A (2014) On the challenges and mechanisms of embodied decisions. Philos Trans R Soc B 369

    Google Scholar 

  • Conrad M (1982) Bootstrapping model of the origin of life. Biosystems 15:209–219

    Article  Google Scholar 

  • Dabaghian Y, Cowan A, Frank L (2007) Topological coding in hippocampus. arXiv:Quant-Ph/0701128v1

  • Dabaghian Y, Memoli F, Frank L, Carlsson G (2012) A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput Biol 8(8):e1002581

    Google Scholar 

  • Deco G, Rolls ET (2005) Attention, short term memory, and action selection: a unifying theory. Prog Neurobiol 76:236–256

    Google Scholar 

  • Dehaene S (2014) Denken: Wie das Gehirn Bewußtsein schafft A. Knaus Verlag, München

    Google Scholar 

  • Der R, Ay N (2009) Roboter mit Entdeckerlust in Technik u. Computer

    Google Scholar 

  • Dinse HR, Krüger K, Best J (1990) A temporal structure of cortical information processing. Concepts Neurosci 1(2):199–238

    Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    Article  Google Scholar 

  • Dudel J, Menzel R, Schmidt PF (1996) Neurowissenschaft. Springer, New York

    Google Scholar 

  • Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behavior. Trend Cogn Sci 14(4):172–179

    Google Scholar 

  • Ebeling W, Feistel R (1982) Physik der Selbstorganization und Evolution. Akademie-Verlag, Berlin

    Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitisch R (1986) Vom Ursprung der genetischen Information Spektrum der Wissenschaft: Evolution, pp 61–80

    Google Scholar 

  • Eliasmith C, Terence C, Choo X, Bekolay T, Dewolfe T, Tang C, Rasmussen D (2012) Largescale model of the functioning brain. Science 338:1202–1205

    Google Scholar 

  • Eskandar EN, Richmond BJ, Optican LM (1992) Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. J Neurophysiol 68:1277–1295

    Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Google Scholar 

  • Friston K, Kiebel S (2009) Predictive coding under the free energy principle. Philos Trans R Soc 364:1211–1221

    Article  Google Scholar 

  • Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29:105–134

    Article  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Google Scholar 

  • Han CE, Yoo SW, Seo SW, Na DL, Seong J-K (2013) Cluster-based statistics for brain connectivity in correlation with behavioral measures. PLoS ONE 8(8):e72332

    Article  Google Scholar 

  • Hassabis D, Maguire EA (2009) The construction system of the brain. Philos Trans R Soc B 364:1263–1271

    Google Scholar 

  • Hassabis D, Maguire EA (2007) Deconstructing eposodic memory with construction. Trends Cogn Sci 11(7):299–306

    Article  Google Scholar 

  • Hasselmo ME (2005) A model of prefrontal cortical mechanisms for goal directed behavior. J Cogn Neurosci 17(7):1–14

    Article  Google Scholar 

  • Hasselmo ME (2009) A model of episodic memory: mental time travel along encoded trajectories using grid cells. Neurobiol Learn Mem 92:559–573

    Article  Google Scholar 

  • Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan College Publishing Company, New York

    Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge

    Google Scholar 

  • Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11:523–523

    Google Scholar 

  • Hilberg W (2012) Wie denkt das Gehirn? Verlag für Sprache und Technik

    Google Scholar 

  • Hinton GE, Salakhutinov RR (2006) Reducing dimensionality of data with neural networks. Science 313:504–507

    Google Scholar 

  • Hubel WH, Wiesel TN (1974) Ordered arrangement of orientation columns in monkeys lacking visual expericence. J Comput Neurol 158:309–318

    Google Scholar 

  • Hüsken M, Igel C, Toussaint M (GECCO 2001) Task dependent evolution of modularity in neural networks. In: Genetic and evolutionary computation conference, pp 187–193

    Google Scholar 

  • Jarvis ED, Güntürkün O, Bruce L, Csillag A et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Google Scholar 

  • Kaas J (1999) The transformation of the association cortex into sensory cortex. Brain Res Bull 50:425

    Article  Google Scholar 

  • Kahle T, Olbrich E, Jost J, Ay N (2008) Complexity measures from interaction structures. Phys Rev E 79:026201. arxiv.org:0806.2552

  • Kahnemann D, Tversky A (eds) (2000) Choices, values and frames. Cambridge University Press, Cambridge

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2012) Neurowissenschaften Spectrum. Akademischer Verlag

    Google Scholar 

  • Koechlin E (2014) An evolutionary computational theory of prefrontal executive function in decision-making. Philos Trans R Soc B 369:20130474

    Google Scholar 

  • Kohonen T (1977) Associative memory. Springer, New York

    Google Scholar 

  • Kolmogorov AN, Uspenski VA (1987 engl. Übers.) Algorithms and randomnes. Theory Prob Appl 32:389–412

    Google Scholar 

  • Konishi M (1986) Centrally synthesized maps of sensory space. TINS 9:163–168

    Google Scholar 

  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localisation in the owl. In: Edelman GM, Gall WE, and Cowan WM (eds) Auditory function. Wiley & Sons Inc., pp 721–745

    Google Scholar 

  • Kosslyn SM, Koenig O (1992) Wet mind. The new cognitive neuroscience. Free Press, New York

    Google Scholar 

  • Le Roux N, Bengio Y (2010) Deep belief networks are compact universal approximators. Neural comput 22:2192–2207

    Article  MATH  MathSciNet  Google Scholar 

  • Linsker R (1992) Deriving receptive fields using an optimal encoding criterion. Adv Neural Inf Process Syst 5:953–956

    Google Scholar 

  • Mallot HP (2013) Computaional neuroscience. Springer, Heidelberg

    Google Scholar 

  • Mallot HP, v Seelen W, Giannakopoulos F (1990) Neural mapping and space-variant image processing. Neural Netw 3:245–263

    Google Scholar 

  • Mallot HP (1985) An overall description of retinotopic mapping in the cat’s visual cortex areas 17, 18, and 19. Biol Cybern 52:45–51

    Article  MATH  Google Scholar 

  • Markov T, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406

    Article  Google Scholar 

  • Minsky M, Papert S (1969) Perceptrons. MIT Press, Cambridge

    MATH  Google Scholar 

  • Mullally SL, Maguire EA (2012) Memory, imagination and predicting the future: a common brain mechanism. Neuroscientist 20:220–234

    Google Scholar 

  • Newell A, Simon HA (1972) Human probelm solving. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    Article  Google Scholar 

  • Palm G (1980) On associative memory. Biol Cybern 36:19–31

    Article  MATH  Google Scholar 

  • Pika S, Bugnyar T (2011) The use of referential gestures in ravens (Corvus corax) in the wild. Nat Commun 2:560

    Article  Google Scholar 

  • Poggio T, Reichardt W (1973) Considerations on models of movement detection. Kybernetik 13:223–227

    Article  Google Scholar 

  • Prior H, Schwarz A, Güntürkün O (2008) Mirror-induced behavior in the magpie (Pica pica):evidence for self-recognition. PLoS Biol 6:e202

    Article  Google Scholar 

  • Quiroga RQ (2012) Concept cells: the building blocks of declarative memory function. Nat Rev 13:587–597

    Google Scholar 

  • Raby CR, Alexis DM, Dickinson A, Clayton NS (2007) Planning for the future by western scrub-jays. Nature 445:919–921

    Article  Google Scholar 

  • Ritter H, Martinetz T, Schulten K (1990) Neuronale Netz. Addison-Wesley, Bonn

    Google Scholar 

  • Rolls ET (2008) Memory, attention and decision-making: a unifying computational neuroscience approach. Oxford University Press, Oxford

    Google Scholar 

  • Schacter DL, Addis DR, Buckner RL (2009) Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci 8:657–661

    Article  Google Scholar 

  • Schacter DL (2012) Constructive memory: past and future. Dialogues Clin Neurosci 14(1):7–18

    Google Scholar 

  • Schöner G, Kelso JAS (1988) A dynamic theory of behavioral change. J Theor Biol 135:501–524

    Article  Google Scholar 

  • Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89

    Google Scholar 

  • Shannon C, Weaver W (1963) A mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Slotine JJ (2006) Modular stability tools for distributed computation control. J Adap Control Signal Process 176:397–416

    Google Scholar 

  • Sparks DL, Mays LE (1990) Signal transformation requires for the generation of saccadic eye movements. Annu Rev Neurosci 13:309–336

    Article  Google Scholar 

  • Sperry RW (1956) The eye and the brain. Sci Am 154(5):48–52

    Google Scholar 

  • Steinbuch K (1961) Die Lernmatrix Kybernetik 1:36–45

    Google Scholar 

  • Taylor AH, Miller R, Gray RD (2012) New Caledonian crows reason about hidden causal agents. Proc Natl Acad Sci USA 109:16389–16391

    Article  Google Scholar 

  • Tennenbaum J, Kamp C, Griffiths TC, Goodman ND (2011) How to grow a mind: statistics, structure and abstraction. Science 331:4

    Article  Google Scholar 

  • Tomasello M (2009) Die Ursprünge der menschlichen Kommunikation Suhrkamp

    Google Scholar 

  • Toussaint M, v Seelen W (2007) Complex adaptation and system structure. BioSystems 90:769–782

    Google Scholar 

  • Tovee MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of neurons in the temporal visual cortical areas of primates. J Neurophysiol 70:640–654

    Google Scholar 

  • van Wedeen J, Rosene DL, Ruopeng W, Guangping D, Mortazavi F, Hagmann P, Kaas JH, Tseng Wen-Yih I (2012) The geometric structure of the brain fiber pathways. Science 335:1628

    Article  Google Scholar 

  • von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100

    Article  Google Scholar 

  • von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40

    Article  Google Scholar 

  • Weir AA, Chappell J, Kacelnik A (2002) Shaping of hooks in New Caledonian crows. Science 297:981

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Dr. U. Körner for many discussions on the subject and with the help in gathering the relevant literature. Her broad knowledge in neurobiology has been of great help for the text and for our conscience as well. The like is true for Dr. M. Casimir who in addition emboldened us to publish. We also thank Dr. Scharstein for his scrupulous perusal of the german manuscript and the resulting improvements. From handwritten difficultly decipherable text fragments Ms. H. Berz compiled a perusable text (german at first). We thank for her patience and her work. The english version, first typed by Ms. A. Johnson-Letzel and Ms. R. Bertgen has got its final polish by Ms. Dr. J. Büttner-Ennever. All these people we are deeply indebted to and we thank them heartily.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner v. Seelen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seelen, W.v., Behrend, K. (2016). Principles of Neural Information Processing. In: Principles of Neural Information Processing. Cognitive Systems Monographs, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-20113-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20113-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20112-2

  • Online ISBN: 978-3-319-20113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics