Skip to main content

Interfacial Forces and Momentum Exchange Closure

  • Chapter
  • First Online:
Book cover Mathematical Modeling of Disperse Two-Phase Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 114))

Abstract

This chapter gives an introduction to the modeling of the different forces acting on a disperse particle, and exerted on it by the continuous fluid. Different academic situations are first examined: spherical particles, very small or very large Reynolds numbers… The forces acting on a particle are decomposed into two contributions. The first contribution comes from the unperturbed fluid (by the particle presence) and is constituted of the Archimedes and Tchen forces. The second contribution comes from the perturbations and is classically decomposed into the sum of the drag, added mass, lift, and history forces. The proximity of a wall gives an additional lubrication force which is called the wall force. The effects of the particles shape and concentration are also examined in Sect. 8.6. In the last Sect. 8.7, the mean momentum interfacial transfer term is derived from the knowledge of the different forces and a proper averaging procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiph Flow 17(5):635–652

    Article  Google Scholar 

  • Auton TR (1987) The lift force on a spherical body in a rotational flow. J Fluid Mech 183:199–218

    Article  Google Scholar 

  • Auton TR, Hunt JCR, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241–257

    Article  MathSciNet  Google Scholar 

  • Bel Fdhila R (1991) Analyse expérimentale et modélisation d’un écoulement vertical à bulles dans un élargissement brusque. Thèse de Doctorat, Institut National Polytechnique de Toulouse

    Google Scholar 

  • Chahed J, Masbernat L (1998) Forces interfaciales et turbulence dans les écoulements à bulles. C R Acad Sc Paris 326:635–642

    Google Scholar 

  • Dan Tam P (1977) Quelques rappels sur la notion de masse ajoutée en mécanique des fluides, Rapport CEA-R-4855

    Google Scholar 

  • Dan Tam P (1981) De la trainée instationnaire sur une petite bulle. Thèse de Doctorat, Institut National Polytechnique Grenoble

    Google Scholar 

  • Gatignol R (1983) The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J de Mécanique théorique et appliqué 1(2):143–160

    Google Scholar 

  • Hadamard J (1911) Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. Note présentée par M. H. Poincarré

    Google Scholar 

  • Haynes PA (2004) Contribution à la modélisation de la turbulence pour les écoulements à bulles : proposition d’un modèle K-ε multi-échelles diphasique. Thèse de Doctorat, Institut National Polytechnique Toulouse

    Google Scholar 

  • Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J 25(5):843–855

    Article  Google Scholar 

  • Ishii M (1990) Two-fluid model for two-phase flow. In: Hewitt GF, Delhaye JM, Zuber N (eds) Multiphase science and technology, vol 5, pp 1–58

    Google Scholar 

  • Ishii M (1977) One-dimensional drift flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report No. 77-47

    Google Scholar 

  • Kamp AM (1996) Ecoulements turbulents à bulles dans une conduite en micropesanteur. Thèse de Doctorat, Institut National Polytechnique de Toulouse

    Google Scholar 

  • Kariyasaki A (1987) Behavior of a single gas bubble in a liquid flow with a linear velocity profile. In: ASME/JSME, 5th thermal engineering joint conference, Honolulu, Hawaï, 22–27 Mar, pp 261–267

    Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Dover Publications, New York

    Google Scholar 

  • Landau L, Lifchitz E (1989) Physique théorique, tome 6: Mécanique des Fluides, Ed. Mir Moscou, 2nd edn

    Google Scholar 

  • Langevin P (1908) Sur la théorie du mouvement Brownien. Comptes Rendus Acad. Sci Paris 146:530–533

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Magnaudet J (1997) The forces acting on bubbles and rigid particles. In: ASME fluids engineering division summer meeting, FEDSM97-3522, 22–26 June

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889

    Article  Google Scholar 

  • Minier JP, Peirano E (2001) The PDF approach to turbulent polydispersed two-phase flows. Phys Rep 352:1–214

    Article  MathSciNet  Google Scholar 

  • Morel C (1997) Modélisation multidimensionnelle des écoulements diphasiques gaz-liquide. Application à la simulation des écoulements à bulles ascendants en conduite verticale. Thèse de Doctorat, Ecole Centrale Paris

    Google Scholar 

  • Neiss C (2013) Modélisation et simulation de la dispersion turbulente et du dépôt de gouttes dans un canal horizontal. Thèse de Doctorat, Université de Grenoble

    Google Scholar 

  • Oesterlé B (2006) Ecoulements multiphasiques, Ed. Hermès, Lavoisier

    Google Scholar 

  • Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combustion Sci 11:119–192

    Article  MathSciNet  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400 (corrigendum Vol. 31, pp. 624)

    Google Scholar 

  • Schiller L, Nauman A (1935) A drag coefficient correlation. VDI Zeitung 77:318–320

    Google Scholar 

  • Simonin O (1991), Modélisation numérique des écoulements turbulents diphasiques à inclusions dispersés. Ecole de Printemps CNRS de Mécanique des Fluides Numérique, Aussois

    Google Scholar 

  • Simonin O (1999) Continuum modeling of dispersed turbulent two-phase flow, Modélisation statistique des écoulements gaz-particules, modélisation physique et numérique des écoulements diphasiques, Cours de l’X (Collège de Polytechnique) du 2-3 juin

    Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil Soc 9:8–27

    Google Scholar 

  • Taylor GI (1928a) The energy of a body moving in an infinite fluid with an application to airships. Proc Royal Soc Lond Ser A A120:13–21

    Article  Google Scholar 

  • Taylor GI (1928b) The forces on a body placed in a curved or converging stream of fluid. Proc Royal Soc Lond Ser A A120:260–283

    Article  Google Scholar 

  • Tomiyama A (1998) Struggle with computational bubble dynamics. In: 3rd international conference multiphase flow ICMF’98, Lyon, France, 8–12 June

    Google Scholar 

  • Van Wijngaarden L (1976) Hydrodynamic interaction between gas bubbles in liquid. J Fluid Mech 77(1):27–44

    Google Scholar 

  • Wallis GB (1990) Inertial coupling in two-phase flow: macroscopic properties of suspensions in an inviscid fluid. Multiph Sci Technol 5:239–361

    Article  Google Scholar 

  • Zuber N (1964) On the dispersed two-phase flow in the laminar flow regime. Chem Eng Sci 19:897

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Morel .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morel, C. (2015). Interfacial Forces and Momentum Exchange Closure. In: Mathematical Modeling of Disperse Two-Phase Flows. Fluid Mechanics and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-20104-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20104-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20103-0

  • Online ISBN: 978-3-319-20104-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics