Skip to main content

Closures for the Bubble Size Distribution and Interfacial Area Concentration

  • Chapter
  • First Online:
Mathematical Modeling of Disperse Two-Phase Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 114))

  • 1969 Accesses

Abstract

This chapter is devoted to the presentation of the closure laws for the interfacial area transport equation and other multi-size bubble models. Considering first the single size case, the different forms of the interfacial area transport equation are recalled and their closure laws are reviewed. These closure laws concern essentially the interfacial area variations due to the coalescence, breakup and phase change phenomena. The gas expansion as well as the nucleation and collapse are also considered. In the second part of the chapter, we present some possible closures for the more difficult case of multi-size bubbly flows. Two approaches are followed: the moment’s method with a presumed size NDF and a class method using a discretization of the NDF. In the moment’s method, two different mathematical expressions are used for the NDF: a log-normal law and a quadratic law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama M (1973) Bubble collapse in sub cooled boiling. Bull Jpn Soc Mech Eng 16(93):570–575

    Article  Google Scholar 

  • Azbel D, Athanasios LL (1983) A mechanism of liquid entrainment. Handbook of fluids in motion. Ann Harbor Science Publishers, Ann Harbor

    Google Scholar 

  • Carrica PM, Drew D, Bonetto F, Lahey RT Jr (1999) A polydisperse model for bubbly two-phase flow around a surface ship. Int J Multiphase Flow 25:257–305

    Article  Google Scholar 

  • Chen YM, Mayinger F (1992) Measurement of heat transfer at the phase interface of condensing bubbles. Int J Multiphase Flow 18(6):877–890

    Article  Google Scholar 

  • Cole R (1960) A photographic study of pool boiling in the region of the critical heat flux. AIChE J 6(4):533–538

    Article  Google Scholar 

  • Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32:1289–1297

    Article  Google Scholar 

  • Delhaye JM (1981) Instantaneous space averaged equations. In: Delhaye JM, Giot M, Riethmuller ML (eds) Thermohydraulics of two-phase systems for industrial design and nuclear engineering. McGraw-Hill, Maidenherd, pp. 159–170

    Google Scholar 

  • Delhaye JM (2001) Some issues related to the modeling of interfacial areas in gas-liquid flows, part II: modeling the source terms for dispersed flows. CR Acad Sci Paris t. 329 Série II b 473–486

    Google Scholar 

  • Guido-Lavalle G, Carrica P, Clausse A, Qazi MK (1994) A bubble number density constitutive equation. Nuc Eng Des 152:213–224

    Article  Google Scholar 

  • Guido-Lavalle G, Clausse A (1991) Application of the statistical description of two-phase flows to interfacial area assessment, VIII ENFIR, Atibaia, SP, Septembro, pp 143–146

    Google Scholar 

  • Hibiki T, Ishii M (1999) Interfacial area transport of adiabatic air-water bubbly flow in vertical round tubes. In: 33rd national heat transfer conference, Albuquerque, New Mexico

    Google Scholar 

  • Hibiki T, Ishii M (2000) One-group interfacial area transport of bubbly flows in vertical round tubes. Int J Heat Mass Transfer 43:2711–2726

    Article  Google Scholar 

  • Hibiki T, Ishii M (2001) Interfacial area concentration in steady fully-developed bubbly flow. Int J Heat Mass Transfer 44:3443–3461

    Article  Google Scholar 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

    Article  Google Scholar 

  • Ishii M, Kim S (2001) Micro four-sensor probe measurement of interfacial area transport for bubbly flow in round pipes. Nucl Eng Des 205:2711–2726

    Article  Google Scholar 

  • Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transfer 45:3111–3123

    Article  Google Scholar 

  • Ishii M, Hibiki T (eds) (2006) Thermo-fluid dynamics of two-phase flow. Springer, Berlin

    Google Scholar 

  • Kamp AM (1996) Ecoulements turbulents à bulles dans une conduite en micropesanteur. Thèse de Doctorat, Institut National Polytechnique de Toulouse

    Google Scholar 

  • Kamp AM, Chesters AK, Colin C, Fabre J (2001) Bubble coalescence in turbulent flows: a mechanistic model for turbulence induced coalescence applied to microgravity bubbly pipe flow. Int J Multiphase Flow 27:1363–1396

    Article  Google Scholar 

  • Kitscha J, Kocamustafaogullari G (1989) Breakup criteria for fluid particles. Int J Multiphase Flow 15(4):573–588

    Article  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Transfer 38(3):481–493

    Article  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems. Int J Heat Mass Transfer 26(9):1377–1387

    Article  Google Scholar 

  • Kurul N, Podowski MZ (1991) Multidimensional effects in forced convection subcooled boiling. In: International heat transfer conference, Jerusalem, paper BO-04, vol 1, pp. 21–26

    Google Scholar 

  • Lehr F, Millies M, Mewes D (2002) Bubble size distributions and flow fields in bubble columns. AIChE J 48(11):2426–2443

    Article  Google Scholar 

  • Lhuillier D (2004) Evolution de la densité d’aire interfaciale dans les mélanges liquide-vapeur. CR Mécanique 332(2004):103–108

    Google Scholar 

  • Luo H, Svendsen HF (1996) Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J 42(5):1225–1233

    Article  Google Scholar 

  • Manon E., 2000, Contribution à l’analyse et à la modélisation locale des écoulements bouillants sous-saturés dans les conditions des réacteurs à eau sous pression, Thèse de Doctorat, Ecole Centrale Paris

    Google Scholar 

  • Marchisio DL, Fox RO (eds) (2013) Computational models for polydisperse particulate and multiphase systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Navarro-Valenti S, Clausse A, Drew DA, Lahey RT Jr (1991) A contribution to the mathematical modeling of bubbly/slug flow regime transition. Chem Eng Comm 102:69–85

    Article  Google Scholar 

  • Park HS, Lee TO, Hibiki T, Beak WP, Ishii M (2007) Modeling of the condensation sink term in an interfacial area transport equation. Int J Heat Mass Transfer 50:5041–5053

    Article  Google Scholar 

  • Prince MJ, Blanch HW (1990) Bubble coalescence and break-up in air-sparged bubble columns. AIChE J 36(10, 99):1485–1499

    Google Scholar 

  • Ranz WE, Marschall WR (1952) Evaporation from drops. Chem Eng Prog 48:173–180

    Google Scholar 

  • Riou X (2003) Contribution à la modélisation de l’aire interfaciale en écoulement gaz-liquide en conduite. Thèse de Doctorat, Institut National Polytechnique de Toulouse

    Google Scholar 

  • Risso F (2000) The mechanisms of deformation and breakup of drops and bubbles. Multiphase Sci Tech 12:1–50

    Article  Google Scholar 

  • Ruckenstein E (1959) On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated. Chem Eng Sci 10:22–30

    Google Scholar 

  • Ruyer P, Seiler N, Beyer M, Weiss FP (2007) A bubble size distribution model for the numerical simulation of bubbly flows. In: 6th International conference on multiphase flow, ICMF2007, Leipzig, Germany, 9–13 July

    Google Scholar 

  • Sevik S, Park SH (1973) The splitting of drops and bubbles by turbulent fluid flow. J Fluid Eng Trans ASME 95(1):53–60

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1987) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  • Ünal HC (1976) Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling. Int J Heat Mass Transf 19:643–649

    Article  Google Scholar 

  • Wu Q, Kim S, Ishii M, Beus SG (1997) One group interfacial area transport in vertical air-water bubbly flow. Submitted to the 1997 national heat transfer conference, Baltimore, Maryland, 10–12 Aug

    Google Scholar 

  • Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubble flow. Int J Heat Mass Transf 41(8–9):1103–1112

    Article  Google Scholar 

  • Yao W, Morel C (2004) Volumetric interfacial area prediction in upward bubbly two-phase flow. Int J Heat Mass Transfer 47:307–328

    Article  Google Scholar 

  • Zaepffel D (2011) Modélisation des écoulements bouillants à bulles polydispersées. Thèse de Doctorat, Institut National Polytechnique Grenoble

    Google Scholar 

  • Zaepffel D, Morel C, Lhuillier D (2012) A multi-size model for boiling bubbly flows. Multiphase Sci Tech 24(2):105–179.

    Article  Google Scholar 

  • Zwick SA, Plesset MS (1955) On the dynamics of small vapor bubbles in liquids. J Math Phys 33:308–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Morel .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morel, C. (2015). Closures for the Bubble Size Distribution and Interfacial Area Concentration. In: Mathematical Modeling of Disperse Two-Phase Flows. Fluid Mechanics and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-20104-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20104-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20103-0

  • Online ISBN: 978-3-319-20104-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics