Skip to main content

Biomass to Energy Supply Chain Network Design: An Overview of Models, Solution Approaches and Applications

  • Chapter
  • First Online:
Handbook of Bioenergy

Part of the book series: Energy Systems ((ENERGY))

Abstract

Energy production from biomass is an alternative and additive way to fossil fuel based energy production to reduce the dependency on limited fossil fuel sources and mitigate the harmful environmental impacts of these systems. One of the major challenges in establishing efficient renewable energy systems is the complex supply chain structure in an uncertain decision environment, various decisions to be made and different conflicting criteria/objectives. This study describes the key issues in decision making for biomass to energy supply chains such as decision levels, uncertainty and sustainability concepts. It also provides a comprehensive review and systematic classification of the current literature on decision making approaches for design, management and operation of biomass to energy supply chains. This study allows readers to identify the decision making methods that satisfy the problem specific requirements and offer a clear vision of the advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgül O, Shah N, Papageorgiou LG (2012a) An optimisation framework for a hybrid first/second generation bioethanol supply chain. Comput Chem Eng 42:101–114

    Article  Google Scholar 

  • Akgül O, Shah N, Papageorgiou LG (2012b) Economic optimisaiton of a UK advanced biofuel supply chain. Biomass Bioenergy 41:57–72

    Article  Google Scholar 

  • Amigun B, von Blottnitz H (2007) Capacity-cost and location-cost analyses for biogas plants in Africa. Resour Conserv Recycl 55:63–73

    Article  Google Scholar 

  • An H, Searcy SW (2012) Economic and energy evaluation of a logistics system based on biomass modules. Biomass Bioenergy 46:190–202

    Article  Google Scholar 

  • An H, Wilhelm WE, Searcy SW (2011) A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas. Bioresour Technol 102:7860–7870

    Article  Google Scholar 

  • Andersen F, Iturmendi F, Espinosa S, Diaz MS (2012) Optimal design and planning of biodiesel supply chain with land competition. Comput Chem Eng 47:170–182

    Article  Google Scholar 

  • Avami A (2012) A model for biodiesel supply chain: a case study in Iran. Renew Sustain Energy Rev 16:4196–4203

    Article  Google Scholar 

  • Avami A (2013) Assessment of optimal biofuel supply chain planning in Iran: technical, economic, and agricultural perspectives. Renew Sustain Energy Rev 26:761–768

    Article  Google Scholar 

  • Aviso KB, Tan RR, Culaba AB, Cruz JB Jr (2011) Fuzzy input-output model for optimizing eco-industrial supply chains under water footprint constraints. J Clean Prod 19:187–196

    Article  Google Scholar 

  • Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management: a review. Renew Sustain Energy Rev 16:1359–1368

    Article  Google Scholar 

  • Awudu I, Zhang J (2013) Stochastic production planning for a biofuel supply chain under demand and price uncertainties. Appl Energy 103:189–196

    Article  Google Scholar 

  • Ayoub N, Martins R, Wang K, Seki H, Naka Y (2007) Two levels decision system for efficient planning and implementation of bioenergy production. Energy Convers Manag 48:709–723

    Article  Google Scholar 

  • Ayoub N, Seki H, Naka Y (2008) A methodology for designing and evaluating biomass utilization networks. In: Braunschweig B, Joulia X (eds) ESCAPE’18: 18th European Symposium on computer aided process engineering, Lyon, June 2008. Computer aided chemical engineering, vol 25. Elsevier, p 1053

    Google Scholar 

  • Ayoub N, Seki H, Naka Y (2009a) Superstructure-based design and operation for biomass utilization networks. Comput Chem Eng 33:1770–1780

    Article  Google Scholar 

  • Ayoub N, Elmoshi E, Seki H, Yaka Y (2009b) Evolutionary algorithms approach for integrated bioenergy supply chains optimization. Energy Convers Manag 50:2944–2955

    Article  Google Scholar 

  • Bai Y, Hwang T, Kang S, Ouyang Y (2011) Biofuel refinery location and supply chain planning under traffic congestion. Transp Res Part B 45:162–175

    Article  Google Scholar 

  • Bai Y, Ouyang Y, Pang JS (2012) Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium. Energy Econ 34:1623–1633

    Article  Google Scholar 

  • Bekkering J, Broekhuis AA, van Gemert WJT (2010) Optimisation of a green gas supply chain—a review. Bioresour Technol 101:450–456

    Article  Google Scholar 

  • Bowersox DJ, Closs DJ, Cooper MB, Bowersox JC (2012) Supply chain logistics management. McGraw-Hill, Irwin

    Google Scholar 

  • Bruglieri M, Liberti L (2008) Optimal running and planning of a biomass-based energy production process. Energy Policy 36:2430–2438

    Article  Google Scholar 

  • Calvert K (2011) Geomatics and bioenergy feasibility assessments: taking stock and looking forward. Renew Sustain Energy Rev 15:1117–1124

    Article  Google Scholar 

  • Chen CW, Fan Y (2012) Bioethanol supply chain system planning under supply and demand uncertainties. Transp Res Part E 48:150–164

    Article  Google Scholar 

  • Corsano G, Vecchietti AR, Montagna JM (2011) Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Comput Chem Eng 35:1384–1398

    Article  Google Scholar 

  • Čuček L, Lam HL, Klemeš JJ, Varbanov PS, Kravanja Z (2010) Synthesis of regional networks for the supply of energy and bioproducts. Clean Technol Environ Policy 12:635–645

    Article  Google Scholar 

  • Čuček L, Varbanov PS, Klemeš JJ, Kravanja Z (2012) Total footprints-based multi-criteria optimisation of regional biomass energy supply chains. Energy 44:135–145

    Article  Google Scholar 

  • Dal Mas M, Giarola S, Zamboni A, Bezzo F (2010) Capacity planning and financial optimization of the bioethanol supply chain under price uncertainty. In: Pierucci S, Buzzi Ferraris G (eds) ESCAPE’20: 20th European symposium on computer aided process engineering, Ischia, June 2010. Computer aided chemical engineering, vol 28. Elsevier, p 97

    Google Scholar 

  • Dal-Mas M, Giarola S, Zamboni A, Bezzo F (2011) Staregic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass Bioenergy 35:2059–2071

    Article  Google Scholar 

  • De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J (2014) Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew Sustain Energy Rev 31:657–670

    Article  Google Scholar 

  • Dunnett A, Adjiman C, Shah N (2007) Biomass to heat supply chains-applications of process optimization. Chem Eng Res Des Part B 85:419–429

    Google Scholar 

  • Dyken S, Bakken BH, Skjelbred HI (2010) Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 35:1338–1350

    Article  Google Scholar 

  • Ebadian M, Sowlati T, Sokhansanj S, Stumborg M, Townley-Smith L (2011) A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosyst Eng 110:280–290

    Article  Google Scholar 

  • Ebadian M, Sowlati T, Sokhansanj S, Townley-Smith L, Stumborg M (2013) Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Appl Energy 102:840–849

    Article  Google Scholar 

  • Ekşioğlu SD, Acharya A, Leightley LE, Arora S (2009) Analyzing the design and management of biomass-to-biorefinery supply chain. Comput Ind Eng 57:1342–1352

    Article  Google Scholar 

  • Elia JA, Baliban RC, Xiao X, Floudas CA (2011) Optimal energy supply network determination and life cycle analysis for hybrid coal, biomass, and natural gas to liquid (CBGTL) plants using carbon-based hydrogen production. Comput Chem Eng 35:1399–1430

    Article  Google Scholar 

  • Erkut E, Karagiannidis A, Perkoulidis G, Tjandra SA (2008) A multicriteria facility location model for municipal solid waste management in North Greece. Eur J Oper Res 187:1402–1421

    Article  MathSciNet  MATH  Google Scholar 

  • Foo DCY, Tan RR, Lam HL, Aziz MKA, Klemeš JJ (2013) Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain. Energy 55:68–73

    Article  Google Scholar 

  • Freppaz D, Minciardi R, Robba M et al (2004) Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenergy 26:15–25

    Article  Google Scholar 

  • Frombo F, Minciardi R, Robba M, Sacile R (2009) A decision support system for planning biomass-based energy production. Energy 34:362–369

    Article  Google Scholar 

  • Geraili A, Sharma P, Romagnoli JA (2014) A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: applications to biorefineries. Comput Chem Eng 61:102–117

    Article  Google Scholar 

  • Ghaffariyan MR, Acuna M, Brown M (2013) Analyzing the effect of five operational factors on forest residue supply chain costs: a case study in Western Australia. Biomass Bioenergy 59:486–493

    Article  Google Scholar 

  • Giarola S, Zamboni A, Bezzo F (2011) Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries. Comput Chem Eng 35:1782–1797

    Article  Google Scholar 

  • Giarola S, Bezzo F, Shah N (2013) A risk management approach to the economic and environmental strategic design of ethanol supply chains. Biomass Bioenergy 58:31–51

    Article  Google Scholar 

  • Gold S, Seuring S (2011) Supply chain and logistics issues of bio-energy production. J Clean Prod 19:32–42

    Article  Google Scholar 

  • Gómez A, Zubizarreta J, Rodrigues M, Dopazo C, Fueyo N (2010) An estimation of the energy potential of agro-industrial residues in Spain. Resour Conserv Recycl 54:972–984

    Article  Google Scholar 

  • Gómez-González M, López A, Jurado F (2013) Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system. Energy Convers Manag 65:539–545

    Article  Google Scholar 

  • Gronalt M, Rauch P (2007) Designing a regional forest fuel supply network. Biomass Bioenergy 31:393–402

    Article  Google Scholar 

  • Gun J, Smith CT (2011) Optimal plant size and feedstock supply radius: A modelling approach to minimize bioenergy production costs. Biomass Bioenergy 35:3350–3359

    Article  Google Scholar 

  • Huang Y, Chen CW, Fan Y (2010) Multistage optimization of the supply chains of biofuels. Transp Res Part E 46:820–830

    Article  Google Scholar 

  • Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A (2010) Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag 30:1860–1870

    Article  Google Scholar 

  • Kanzian C, Kühmaier M, Zazgornik J, Stampfer K (2013) Design of forest energy supply networks using multi-objective optimization. Biomass Bioenergy 58:294–302

    Article  Google Scholar 

  • Kim J, Realff MJ, Lee JH, Whittaker C, Furtner L (2011a) Design of biomass processing network for biofuel production using an MILP model. Biomass Bioenergy 35:853–871

    Article  Google Scholar 

  • Kim J, Realff MJ, Lee JH (2011b) Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Comput Chem Eng 35:1738–1751

    Article  Google Scholar 

  • Kocoloski M, Griffin WM, Matthews HS (2011) Impacts of facility size and location decisions on ethanol production cost. Energy Policy 39:47–56

    Article  Google Scholar 

  • Krukanont P, Prasertsan S (2004) Geographical distribution of biomass and potential sites of rubber wood fired power plants in Southern Thailand. Biomass Bioenergy 26:47–59

    Article  Google Scholar 

  • Kumar A, Sokhansanj S (2007) Switchgrass (Panicum vigratum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. Bioresour Technol 98:1033–1044

    Article  Google Scholar 

  • Lam HL, Klemeš JJ, Kravanja Z (2011) Model-size reduction techniques for large-scale biomass production and supply networks. Energy 36:4599–4608

    Article  Google Scholar 

  • Lam HL, Ng WPQ, Ng RTL et al (2013) Green strategy for sustainable waste-to-energy supply chain. Energy 57:4–16

    Article  Google Scholar 

  • Lambert DK, Middleton J (2010) Logistical design of a regional herbaceous crop residue-based ethanol production complex. Biomass Bioenergy 34:91–100

    Article  Google Scholar 

  • Leão RRCC, Hamacher S, Oliveira F (2011) Optimization of biodiesel supply chains based on small farmers: A case study in Brazil. Bioresour Technol 102:8958–8963

    Article  Google Scholar 

  • Leboreiro J, Hilaly AK (2011) Biomass transportation model and optimum plant size for the production of ethanol. Bioresour Technol 102:2712–2723

    Article  Google Scholar 

  • Leboreiro J, Hilaly AK (2013) Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover. Biomass Bioenergy 54:158–169

    Article  Google Scholar 

  • Leduc S, Schwab D, Dotzauer E, Schmid E, Obersteiner M (2008) Optimal location of wood gasification plants for methanol production with heat recovery. Int J Energy Res 32:1080–1091

    Article  Google Scholar 

  • Leduc S, Starfelt F, Dotzauer E et al (2010a) Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy 35:2709–2716

    Article  Google Scholar 

  • Leduc S, Lundgren J, Franklin O, Dotzauer E (2010b) Locaiton of a biomass based methanol production plant: a dynamic problem in northern Sweden. Appl Energy 87:68–75

    Article  Google Scholar 

  • Lin T, Rodríguez LF, Shastri YN, Hansen AC, King KC (2014) Integrated strategic and tactical biomass-biofuel supply chain optimization. Bioresour Technol. doi: 10.1016/j.biortech.2013.12.121

  • López PR, Jurado F, Reyes NR, Galán SG, Gómez M (2008) Particle swarm optimization for biomass-fuelled systems with technical constraints. Eng Appl Artif Intell 21:1389–1396

    Article  Google Scholar 

  • Mafakheri F, Nasiri F (2013) Modelling of biomass-to-energy supply chain operations: applications, challenges and research directions. Energy Policy. doi:10.1016/j.en.pol.2013.11.071

  • Mahmoudi M, Sowlati T, Sokhansanj S (2009) Logistics of supplying biomass from a mountain pine beetle-infested forest to a power plant in British Columbia. Scand J For Res 24:76–86

    Article  Google Scholar 

  • Mansoornejad B, Chambost V, Stuart P (2010) Integrating product portfolio design and supply chain design for the forest biorefinery. Comput Chem Eng 34:1497–1506

    Article  Google Scholar 

  • Mansoornejad B, Pistikopoulos EN, Stuart PR (2013) Scenario-based strategic supply chain design and analysis for the forest biorefinery using an operational supply chain model. Int J Prod Econ 144:618–634

    Article  Google Scholar 

  • Marvin WA, Schmidt LD, Benjaafar S, Tiffany DG, Daoutidis P (2012) Economic optimization of a lignocellulosic biomass-to-ethanol supply chain. Chem Eng Sci 67:68–79

    Article  Google Scholar 

  • McCormick K, Kåberger T (2007) Key barriers for bioenergy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass Bioenergy 31:443–452

    Article  Google Scholar 

  • Mckendry P (2002a) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  Google Scholar 

  • Mckendry P (2002b) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  Google Scholar 

  • Mckendry P (2002c) Energy production from biomass (Part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  Google Scholar 

  • Mele FD, Guillén-Gosálbez G, Jimenéz L (2009) Optimal planning of supply chains for bioethanol and sugar production with economic and environmental concerns. In: Jeżowski J, Thullie J (eds) ESCAPE’19: 19th European symposium on computer aided process engineering, Cracow, June 2009. Computer aided chemical engineering, vol 26. Elsevier, p 997

    Google Scholar 

  • Mobini M, Sowlati T, Sokhansanj S (2011) Forest biomass supply logistics for a power plant using the discrete-event simulation approach. Appl Energy 88:1241–1250

    Article  Google Scholar 

  • Mobini M, Sowlati T, Sokhansanj S (2013) A simulation model for the design and analysis of wood pellet supply chains. Appl Energy 111:1239–1249

    Article  Google Scholar 

  • Nagel J (2000) Determination of an economic energy supply structure based on biomass using a mixed-integer linear optimization model. Ecol Eng 16:91–102

    Article  Google Scholar 

  • Osmani A, Zhang J (2013) Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy 59:157–172

    Article  Google Scholar 

  • Osmani A, Zhang J (2014) Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment. Appl Energy 114:572–587

    Article  Google Scholar 

  • Papapostolou C, Kondili E, Kaldellis JK (2011a) Modelling biomass and biofuels supply chains. In: Pistikopoulos EN, Georgiadis MC, Kokossis AC (eds) ESCAPE’21: 21st European symposium on computer aided process engineering, Chalkidiki, May 2011. Computer aided chemical engineering, vol 29. Elsevier, p 1773

    Google Scholar 

  • Papapostolou C, Kondili E, Kaldellis JK (2011b) Development and implementation of an optimisation model for biofuels supply chain. Energy 36:6019–6026

    Article  Google Scholar 

  • Parker N, Tittmann P, Hart Q et al (2010) Developmet of a biorefinery optimized biofuel supply curve for the Western United States. Biomass Bioenergy 34:1597–1607

    Article  Google Scholar 

  • Pérez-Fortes M, Lainez-Aguirre JM, Arranz-Piera P, Velo E, Puigjaner L (2012) Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach. Energy 44:79–95

    Article  Google Scholar 

  • Perpiña C, Martínez-Llario JC, Pérez-Navarro A (2013) Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy 31:326–335

    Article  Google Scholar 

  • Reche-López P, Ruiz-Reyes N, Galán SG, Jurado F (2009) Comparison of metaheuristic techniques to determine optimal placement of biomass power plants. Energy Convers Manag 50:2020–2028

    Article  Google Scholar 

  • Rentizelas AA, Tatsiopoulos IP (2010) Locating a bioenergy facility using a hybrid optimization method. Int J Prod Econ 123:196–209

    Article  Google Scholar 

  • Rentizelas AA, Tatsiopoulos IP, Tolis A (2009a) An optimization model for multi-biomass tri-generation energy supply. Biomass Bioenergy 33:223–233

    Article  Google Scholar 

  • Rentizelas AA, Tolis AJ, Tatsiopoulos IP (2009b) Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew Sustain Energy Rev 13:887–894

    Article  Google Scholar 

  • Rentizelas AA, Tolis AI, Tatsiopoulos IP (2013) Optimisation and investment analysis of two biomass-to-heat supply chain structures. Biosyst Eng. doi: 10.1016/j.biosystemseng.2013.07.012

  • Roni MS, Eksioglu SD, Searcy E, Jha K (2014) A supply chain network design model for biomass co-firing in coal-fired power plants. Transp Res Part E 61:115–134

    Article  Google Scholar 

  • Santibañez-Aguilar JE, González-Campos JB, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod 65:270–294

    Article  Google Scholar 

  • Shabani N, Sowlati T (2013) A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl Energy 104:353–361

    Article  Google Scholar 

  • Sharma B, Ingalls RG, Jones CL, Khanchi A (2013a) Biomass supply chain design and analysis: basis, overview, modeling, challenges, and future. Renew Sustain Energy Rev 24:608–627

    Article  Google Scholar 

  • Sharma B, Ingalls RG, Jones CL, Huhnke RL, Khanchi A (2013b) Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system. Bioresour Technol 150:163–171

    Article  Google Scholar 

  • Shi X, Elmore A, Li X et al (2008) Using spatial information technologies to select sites for biomass power plants: a case study in Guangdong Province, China. Biomass Bioenergy 32:35–43

    Article  Google Scholar 

  • Singh J, Panesar BS, Sharma SK (2011) Geographical distribution of agricultural residues and optimum sites of biomass based power plant in Bathinda, Punjab. Biomass Bioenergy 35:4455–4460

    Article  Google Scholar 

  • Sokhansanj S, Kumar A, Turhollow AF (2006) Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy 30:838–847

    Article  Google Scholar 

  • Sultana A, Kumar A (2011) Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour Technol 102:9947–9956

    Article  Google Scholar 

  • Sultana A, Kumar A (2012) Optimal siting and size of biorefinery facilities using geographic information system. Appl Energy 94:192–201

    Article  Google Scholar 

  • Sun J, Lin J, Qian Y (2013) Game-theoretic analysis of competitive agri-biomass supply chain. J Clean Prod 43:174–181

    Article  MATH  Google Scholar 

  • Tatsiopoulos IP, Tolis AJ (2003) Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass Bioenergy 24:199–214

    Article  Google Scholar 

  • Tong K, Gleeson MJ, Rong G, You F (2014) Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty. Biomass Bioenergy 60:108–120

    Article  Google Scholar 

  • Velazquez-Marti B, Fernandez-Gonzalez E (2010) Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction. Renew Energy 35:2136–2142

    Article  Google Scholar 

  • Vera D, Carabias J, Jurado F, Ruiz-Reyes N (2010) A Honey Bee Foraging approach for optimal location of a biomass power plant. Appl Energy 87:2119–2127

    Article  Google Scholar 

  • Voivontas D, Assimacopoulos D, Koukios EG (2001) Assessment of biomass potential for power production: a GIS based method. Biomass Bioenergy 20:101–112

    Article  Google Scholar 

  • Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenergy 32:551–557

    Article  Google Scholar 

  • Wang X, Ouyang Y, Yang H, Bai Y (2013) Optimal biofuel supply chain design under consumption mandates with renewable identification numbers. Transp Res Part B 57:158–171

    Article  Google Scholar 

  • Windisch J, Röser D, Mola-Yudego B, Sikanen L, Asikainen A (2013) Business process mapping and discrete-event simulation of two forest biomass supply chains. Biomass Bioenergy 56:370–381

    Article  Google Scholar 

  • Wolfsmayr UJ, Rauch P (2014) The primary forest fuel supply chain: a literature review. Biomass Bioenergy 60:203–221

    Article  Google Scholar 

  • Xie F, Huang Y, Eksioglu S (2014) Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresour Technol 152:15–23

    Article  Google Scholar 

  • Yagi K, Nakata T (2011) Economic analysis on small-scale forest biomass gasification considering geographical resources distribution and technical characteristics. Biomass Bioenergy 35:2883–2892

    Article  Google Scholar 

  • Yu H, Wang Q, Ileleji KE et al (2011) Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 1: Straight-line delivery. Biomass Bioenergy. doi: 10.1016/j.biombioe.2011.10.022

  • Yu H, Wang Q, Ileleji KE et al (2012) Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 2: Road delivery. Biomass Bioenergy. doi: 10.1016/j.biombioe.2012.06.028

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng. doi: 10.1016/j.compchemeng.2013.11.016

  • Zamboni A, Bezzo F, Shah N (2009) Supply chain optimization for bioethanol production system in Northern Italy: environmentally conscious strategic design. In: Alves RMB, Nascimento CAO, Biscaia EC Jr (eds) PSE2009: 10th International symposium on process systems engineering, Chalkidiki, August 2009. Computer aided chemical engineering, vol 27. Elsevier, p 2037

    Google Scholar 

  • Zhang L, Hu G (2013) Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass Bioenergy 58:238–250

    Article  Google Scholar 

  • Zhang F, Johnson DM, Sutherland JW (2011) A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenergy 35:3951–3961

    Google Scholar 

  • Zhang F, Johnson DM, Johnson MA (2012) Development of a simulation model of biomass supply chain for biofuel production. Renew Energy 44:380–391

    Article  Google Scholar 

  • Zhang J, Osmani A, Awudu I, Gonela V (2013) An integrated optimization model for switchgrass-based bioethanol supply chain. Appl Energy 102:1205–1217

    Article  Google Scholar 

  • Zhu X, Yao Q (2011) Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresour Technol 102:10936–10945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şebnem Yılmaz Balaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balaman, Ş.Y., Selim, H. (2015). Biomass to Energy Supply Chain Network Design: An Overview of Models, Solution Approaches and Applications. In: Eksioglu, S., Rebennack, S., Pardalos, P. (eds) Handbook of Bioenergy. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20092-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20092-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20091-0

  • Online ISBN: 978-3-319-20092-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics