Advertisement

Contact of Thin Inhomogeneous Transversely Isotropic Elastic Layers

  • Ivan ArgatovEmail author
  • Gennady Mishuris
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 50)

Abstract

In this chapter we consider contact problems for thin bonded inhomogeneous transversely isotropic elastic layers. In particular, in Sects. 8.1 and 8.2, the deformation problems are studied for the cases of elastic layers with the out-of-plane and thickness-variable inhomogeneous properties, respectively. In Sect. 8.3, the axisymmetric frictionless contact problems for thin incompressible inhomogeneous elastic layers are studied in detail in the framework of the leading-order asymptotic model. Finally, the deformation problem for a transversely isotropic elastic layer bonded to a rigid substrate, and coated with a very thin elastic layer made of another transversely isotropic material is analyzed in Sect. 8.4.

References

  1. 1.
    Aleksandrov, V.M.: Asymptotic solution of the axisymmetric contact problem for an elastic layer of incompressible material. J. Apll. Math. Mech. 67, 589–593 (2003)CrossRefGoogle Scholar
  2. 2.
    Alexandrov, V.M., Mkhitaryan, S.M.: Contact Problems for Solids with Thin Coatings and Layers [in Russian]. Nauka, Moscow (1985)Google Scholar
  3. 3.
    Alexandrov, V.M., Pozharskii, D.A.: Three-Dimensional Contact Problems. Kluwer, Dordrecht (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Argatov, I., Mishuris, G.: An asymptotic model for a thin bonded elastic layer coated with an elastic membrane. arXiv preprint arXiv:1504.06792 (2015)
  5. 5.
    Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRefGoogle Scholar
  6. 6.
    Avilkin, V.I., Alexandrov, V.M., Kovalenko, E.V.: On using the more-accurate equations of thin coatings in the theory of axisymmetric contact problems for composite foundations. J. Appl. Math. Mech. 49, 770–777 (1985)zbMATHCrossRefGoogle Scholar
  7. 7.
    Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Elliott, H.A.: Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Camb. Phil. Soc. 44, 522–533 (1948)CrossRefGoogle Scholar
  10. 10.
    Evans, L.C.: Partial Differential Equations. AMS, Providence (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Federico, F., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41, 3309–3313 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Federico, S., Grillo, A., La Rosa, G., Giaquinta, G., Herzog, W.: A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J. Biomech. 38, 2008–2018 (2005)CrossRefGoogle Scholar
  13. 13.
    Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sijthoff and Noordho, Alphen aan den Rijn (1980)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gol’denveizer, A.L.: Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. J. Appl. Math. Mech. 26, 1000–1025 (1962)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  16. 16.
    Malits, P.: Indentation of an incompressible inhomogeneous layer by a rigid circular indenter. Q. J. Mech. Appl. Math. 59, 343–358 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Rahman, M., Newaz, G.: Elastostatic surface displacements of a half-space reinforced by a thin film due to an axial ring load. Int. J. Eng. Sci. 35, 603–611 (1997)zbMATHCrossRefGoogle Scholar
  18. 18.
    Rahman, M., Newaz, G.: Boussinesq type solution for a transversely isotropic half-space coated with a thin film. Int. J. Eng. Sci. 38, 807–822 (2000)zbMATHCrossRefGoogle Scholar
  19. 19.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsAberystwyth UniversityAberystwythUK

Personalised recommendations